Up to index of Isabelle/HOL/arrays
theory Kildall = SemilatAlg + While_Combinator:(* Title: HOL/MicroJava/BV/Kildall.thy
ID: $Id: Kildall.html,v 1.1 2002/11/28 16:11:18 kleing Exp $
Author: Tobias Nipkow, Gerwin Klein
Copyright 2000 TUM
Kildall's algorithm
*)
header {* \isaheader{Kildall's Algorithm}\label{sec:Kildall} *}
theory Kildall = SemilatAlg + While_Combinator:
consts
iter :: "'s binop \<Rightarrow> 's step_type \<Rightarrow>
's list \<Rightarrow> nat set \<Rightarrow> 's list × nat set"
propa :: "'s binop \<Rightarrow> (nat × 's) list \<Rightarrow> 's list \<Rightarrow> nat set \<Rightarrow> 's list * nat set"
primrec
"propa f [] ss w = (ss,w)"
"propa f (q'#qs) ss w = (let (q,t) = q';
u = t +_f ss!q;
w' = (if u = ss!q then w else insert q w)
in propa f qs (ss[q := u]) w')"
defs iter_def:
"iter f step ss w ==
while (\<lambda>(ss,w). w \<noteq> {})
(\<lambda>(ss,w). let p = SOME p. p \<in> w
in propa f (step p (ss!p)) ss (w-{p}))
(ss,w)"
constdefs
unstables :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat set"
"unstables r step ss == {p. p < size ss \<and> ¬stable r step ss p}"
kildall :: "'s ord \<Rightarrow> 's binop \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> 's list"
"kildall r f step ss == fst(iter f step ss (unstables r step ss))"
consts merges :: "'s binop \<Rightarrow> (nat × 's) list \<Rightarrow> 's list \<Rightarrow> 's list"
primrec
"merges f [] ss = ss"
"merges f (p'#ps) ss = (let (p,s) = p' in merges f ps (ss[p := s +_f ss!p]))"
lemmas [simp] = Let_def semilat.le_iff_plus_unchanged [symmetric]
lemma (in semilat) nth_merges:
"\<And>ss. \<lbrakk>p < length ss; ss \<in> list n A; \<forall>(p,t)\<in>set ps. p<n \<and> t\<in>A \<rbrakk> \<Longrightarrow>
(merges f ps ss)!p = map snd [(p',t') \<in> ps. p'=p] ++_f ss!p"
(is "\<And>ss. \<lbrakk>_; _; ?steptype ps\<rbrakk> \<Longrightarrow> ?P ss ps")
proof (induct ps)
show "\<And>ss. ?P ss []" by simp
fix ss p' ps'
assume ss: "ss \<in> list n A"
assume l: "p < length ss"
assume "?steptype (p'#ps')"
then obtain a b where
p': "p'=(a,b)" and ab: "a<n" "b\<in>A" and "?steptype ps'"
by (cases p', auto)
assume "\<And>ss. p< length ss \<Longrightarrow> ss \<in> list n A \<Longrightarrow> ?steptype ps' \<Longrightarrow> ?P ss ps'"
hence IH: "\<And>ss. ss \<in> list n A \<Longrightarrow> p < length ss \<Longrightarrow> ?P ss ps'" .
from ss ab
have "ss[a := b +_f ss!a] \<in> list n A" by (simp add: closedD)
moreover
from calculation
have "p < length (ss[a := b +_f ss!a])" by simp
ultimately
have "?P (ss[a := b +_f ss!a]) ps'" by (rule IH)
with p' l
show "?P ss (p'#ps')" by simp
qed
(** merges **)
lemma length_merges [rule_format, simp]:
"\<forall>ss. size(merges f ps ss) = size ss"
by (induct_tac ps, auto)
lemma (in semilat) merges_preserves_type_lemma:
shows "\<forall>xs. xs \<in> list n A \<longrightarrow> (\<forall>(p,x) \<in> set ps. p<n \<and> x\<in>A)
\<longrightarrow> merges f ps xs \<in> list n A"
apply (insert closedI)
apply (unfold closed_def)
apply (induct_tac ps)
apply simp
apply clarsimp
done
lemma (in semilat) merges_preserves_type [simp]:
"\<lbrakk> xs \<in> list n A; \<forall>(p,x) \<in> set ps. p<n \<and> x\<in>A \<rbrakk>
\<Longrightarrow> merges f ps xs \<in> list n A"
by (simp add: merges_preserves_type_lemma)
lemma (in semilat) merges_pres_type [simp]:
"\<lbrakk> xs \<in> list n A; s \<in> A; p < n; pres_type step n A; bounded step n A \<rbrakk>
\<Longrightarrow> merges f (step p s) xs \<in> list n A"
by (blast dest: pres_typeD boundedD merges_preserves_type)
lemma (in semilat) merges_incr_lemma:
"\<forall>xs. xs \<in> list n A \<longrightarrow> (\<forall>(p,x)\<in>set ps. p<size xs \<and> x \<in> A) \<longrightarrow> xs <=[r] merges f ps xs"
apply (induct_tac ps)
apply simp
apply simp
apply clarify
apply (rule order_trans)
apply simp
apply (erule list_update_incr)
apply simp
apply simp
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
done
lemma (in semilat) merges_incr:
"\<lbrakk> xs \<in> list n A; \<forall>(p,x)\<in>set ps. p<size xs \<and> x \<in> A \<rbrakk>
\<Longrightarrow> xs <=[r] merges f ps xs"
by (simp add: merges_incr_lemma)
lemma (in semilat) merges_same_conv [rule_format]:
"(\<forall>xs. xs \<in> list n A \<longrightarrow> (\<forall>(p,x)\<in>set ps. p<size xs \<and> x\<in>A) \<longrightarrow>
(merges f ps xs = xs) = (\<forall>(p,x)\<in>set ps. x <=_r xs!p))"
apply (induct_tac ps)
apply simp
apply clarsimp
apply (rename_tac p x ps xs)
apply (rule iffI)
apply (rule context_conjI)
apply (subgoal_tac "xs[p := x +_f xs!p] <=[r] xs")
apply (force dest!: le_listD simp add: nth_list_update)
apply (erule subst, rule merges_incr)
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
apply clarify
apply (rule conjI)
apply simp
apply blast
apply blast
apply clarify
apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
apply blast
apply clarify
apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
done
lemma (in semilat) list_update_le_listI [rule_format]:
"set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> xs <=[r] ys \<longrightarrow> p < size xs \<longrightarrow>
x <=_r ys!p \<longrightarrow> x\<in>A \<longrightarrow> xs[p := x +_f xs!p] <=[r] ys"
apply(insert semilat)
apply (unfold Listn.le_def lesub_def semilat_def supremum_def)
apply (simp add: list_all2_conv_all_nth nth_list_update)
done
lemma (in semilat) merges_pres_le_ub:
shows "\<lbrakk> set ts <= A; set ss <= A;
\<forall>(p,t)\<in>set ps. t <=_r ts!p \<and> t \<in> A \<and> p < size ts; ss <=[r] ts \<rbrakk>
\<Longrightarrow> merges f ps ss <=[r] ts"
proof -
{ fix t ts ps
have
"\<And>qs. \<lbrakk>set ts <= A; \<forall>(p,t)\<in>set ps. t <=_r ts!p \<and> t \<in> A \<and> p< size ts \<rbrakk> \<Longrightarrow>
set qs <= set ps \<longrightarrow>
(\<forall>ss. set ss <= A \<longrightarrow> ss <=[r] ts \<longrightarrow> merges f qs ss <=[r] ts)"
apply (induct_tac qs)
apply simp
apply (simp (no_asm_simp))
apply clarify
apply (rotate_tac -2)
apply simp
apply (erule allE, erule impE, erule_tac [2] mp)
apply (drule bspec, assumption)
apply (simp add: closedD)
apply (drule bspec, assumption)
apply (simp add: list_update_le_listI)
done
} note this [dest]
case rule_context
thus ?thesis by blast
qed
(** propa **)
lemma decomp_propa:
"\<And>ss w. (\<forall>(q,t)\<in>set qs. q < size ss) \<Longrightarrow>
propa f qs ss w =
(merges f qs ss, {q. \<exists>t. (q,t)\<in>set qs \<and> t +_f ss!q \<noteq> ss!q} Un w)"
apply (induct qs)
apply simp
apply (simp (no_asm))
apply clarify
apply simp
apply (rule conjI)
apply (simp add: nth_list_update)
apply blast
apply (simp add: nth_list_update)
apply blast
done
(** iter **)
lemma (in semilat) stable_pres_lemma:
shows "\<lbrakk>pres_type step n A; bounded step n A;
ss \<in> list n A; p \<in> w; \<forall>q\<in>w. q < n;
\<forall>q. q < n \<longrightarrow> q \<notin> w \<longrightarrow> stable r step ss q; q < n;
\<forall>s'. (q,s') \<in> set (step p (ss ! p)) \<longrightarrow> s' +_f ss ! q = ss ! q;
q \<notin> w \<or> q = p \<rbrakk>
\<Longrightarrow> stable r step (merges f (step p (ss!p)) ss) q"
apply (unfold stable_def)
apply (subgoal_tac "\<forall>s'. (q,s') \<in> set (step p (ss!p)) \<longrightarrow> s' : A")
prefer 2
apply clarify
apply (erule pres_typeD)
prefer 3 apply assumption
apply (rule listE_nth_in)
apply assumption
apply simp
apply simp
apply simp
apply clarify
apply (subst nth_merges)
apply simp
apply (frule boundedD, assumption)
prefer 2 apply assumption
apply (rule listE_nth_in)
prefer 2 apply assumption
apply (rule merges_pres_type, assumption)
apply (rule listE_nth_in, assumption)
apply blast
apply blast
apply assumption
apply assumption
apply assumption
apply assumption
apply clarify
apply (rule conjI)
apply (erule boundedD)
prefer 3 apply assumption
apply blast
apply (erule listE_nth_in)
apply blast
apply (erule pres_typeD)
prefer 3 apply assumption
apply simp
apply simp
apply(subgoal_tac "q < length ss")
prefer 2 apply simp
apply (frule nth_merges [of q _ _ "step p (ss!p)"]) (* fixme: why does method subst not work?? *)
apply assumption
apply clarify
apply (rule conjI)
apply (erule boundedD)
prefer 3 apply assumption
apply blast
apply (erule listE_nth_in)
apply blast
apply (erule pres_typeD)
prefer 3 apply assumption
apply simp
apply simp
apply (drule_tac P = "\<lambda>x. (a, b) \<in> set (step q x)" in subst)
apply assumption
apply (simp add: plusplus_empty)
apply (cases "q \<in> w")
apply simp
apply (rule ub1')
apply assumption
apply clarify
apply (rule pres_typeD)
apply assumption
prefer 3 apply assumption
apply (blast intro: listE_nth_in)
apply (blast intro: pres_typeD)
apply (blast intro: listE_nth_in dest: boundedD)
apply assumption
apply simp
apply (erule allE, erule impE, assumption, erule impE, assumption)
apply (rule order_trans)
apply simp
defer
apply (rule pp_ub2)
apply simp
apply clarify
apply simp
apply (rule pres_typeD)
apply assumption
prefer 3 apply assumption
apply (blast intro: listE_nth_in)
apply (blast intro: pres_typeD)
apply (blast intro: listE_nth_in dest: boundedD)
apply blast
done
lemma (in semilat) merges_bounded_lemma:
"\<lbrakk> mono r step n A; bounded step n A;
\<forall>(p',s') \<in> set (step p (ss!p)). s' \<in> A; ss \<in> list n A; ts \<in> list n A; p < n;
ss <=[r] ts; \<forall>p. p < n \<longrightarrow> stable r step ts p \<rbrakk>
\<Longrightarrow> merges f (step p (ss!p)) ss <=[r] ts"
apply (unfold stable_def)
apply (rule merges_pres_le_ub)
apply simp
apply simp
prefer 2 apply assumption
apply clarsimp
apply (drule boundedD, assumption)
prefer 2 apply assumption
apply (erule listE_nth_in)
apply blast
apply (erule allE, erule impE, assumption)
apply (drule bspec, assumption)
apply simp
apply (drule monoD [of _ _ _ _ p "ss!p" "ts!p"])
apply assumption
apply simp
apply simp
apply (simp add: le_listD)
apply (drule lesub_step_typeD, assumption)
apply clarify
apply (drule bspec, assumption)
apply simp
apply (blast intro: order_trans)
done
lemma termination_lemma: includes semilat
shows "\<lbrakk> ss \<in> list n A; \<forall>(q,t)\<in>set qs. q<n \<and> t\<in>A; p\<in>w \<rbrakk> \<Longrightarrow>
ss <[r] merges f qs ss \<or>
merges f qs ss = ss \<and> {q. \<exists>t. (q,t)\<in>set qs \<and> t +_f ss!q \<noteq> ss!q} Un (w-{p}) < w"
apply(insert semilat)
apply (unfold lesssub_def)
apply (simp (no_asm_simp) add: merges_incr)
apply (rule impI)
apply (rule merges_same_conv [THEN iffD1, elim_format])
apply assumption+
defer
apply (rule sym, assumption)
defer apply simp
apply (subgoal_tac "\<forall>q t. ¬((q, t) \<in> set qs \<and> t +_f ss ! q \<noteq> ss ! q)")
apply (blast intro!: psubsetI elim: equalityE)
apply clarsimp
apply (drule bspec, assumption)
apply (drule bspec, assumption)
apply clarsimp
done
lemma iter_properties[rule_format]: includes semilat
shows "\<lbrakk> acc r A; pres_type step n A; mono r step n A;
bounded step n A; \<forall>p\<in>w0. p < n; ss0 \<in> list n A;
\<forall>p<n. p \<notin> w0 \<longrightarrow> stable r step ss0 p \<rbrakk> \<Longrightarrow>
iter f step ss0 w0 = (ss',w')
\<longrightarrow>
ss' \<in> list n A \<and> stables r step ss' \<and> ss0 <=[r] ss' \<and>
(\<forall>ts\<in>list n A. ss0 <=[r] ts \<and> stables r step ts \<longrightarrow> ss' <=[r] ts)"
apply(insert semilat)
apply (unfold iter_def stables_def)
apply (rule_tac P = "\<lambda>(ss,w).
ss \<in> list n A \<and> (\<forall>p<n. p \<notin> w \<longrightarrow> stable r step ss p) \<and> ss0 <=[r] ss \<and>
(\<forall>ts\<in>list n A. ss0 <=[r] ts \<and> stables r step ts \<longrightarrow> ss <=[r] ts) \<and>
(\<forall>p\<in>w. p < n)" and
r = "{(ss',ss) . ss \<in> list n A \<and> ss' \<in> list n A \<and> ss <[r] ss'} <*lex*> finite_psubset"
in while_rule)
-- "Invariant holds initially:"
apply (simp add:stables_def)
-- "Invariant is preserved:"
apply(simp add: stables_def split_paired_all)
apply(rename_tac ss w)
apply(subgoal_tac "(SOME p. p \<in> w) \<in> w")
prefer 2; apply (fast intro: someI)
apply(subgoal_tac "\<forall>(q,t) \<in> set (step (SOME p. p \<in> w) (ss ! (SOME p. p \<in> w))). q < length ss \<and> t \<in> A")
prefer 2
apply clarify
apply (rule conjI)
apply clarsimp
apply (rule boundedD, assumption)
prefer 3 apply assumption
apply blast
apply (erule listE_nth_in)
apply blast
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (subst decomp_propa)
apply blast
apply simp
apply (rule conjI)
apply (rule merges_preserves_type)
apply blast
apply clarify
apply (rule conjI)
apply clarsimp
apply (rule boundedD, assumption)
prefer 3 apply assumption
apply blast
apply (erule listE_nth_in)
apply blast
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (rule conjI)
apply clarify
apply (blast intro!: stable_pres_lemma)
apply (rule conjI)
apply (blast intro!: merges_incr intro: le_list_trans)
apply (rule conjI)
apply clarsimp
apply (blast intro!: merges_bounded_lemma)
apply clarsimp
apply (erule disjE)
apply clarify
apply (erule boundedD)
prefer 3 apply assumption
apply blast
apply (erule listE_nth_in)
apply blast
apply blast
-- "Postcondition holds upon termination:"
apply(clarsimp simp add: stables_def split_paired_all)
-- "Well-foundedness of the termination relation:"
apply (rule wf_lex_prod)
apply (drule orderI [THEN acc_le_listI])
apply (simp only: acc_def lesssub_def)
apply (rule wf_finite_psubset)
-- "Loop decreases along termination relation:"
apply(simp add: stables_def split_paired_all)
apply(rename_tac ss w)
apply(subgoal_tac "(SOME p. p \<in> w) \<in> w")
prefer 2; apply (fast intro: someI)
apply(subgoal_tac "\<forall>(q,t) \<in> set (step (SOME p. p \<in> w) (ss ! (SOME p. p \<in> w))). q < length ss \<and> t \<in> A")
prefer 2
apply clarify
apply (rule conjI)
apply clarsimp
apply (rule boundedD, assumption)
prefer 3 apply assumption
apply blast
apply (erule listE_nth_in)
apply blast
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (subst decomp_propa)
apply blast
apply clarify
apply (simp del: listE_length
add: lex_prod_def finite_psubset_def
bounded_nat_set_is_finite)
apply (frule merges_preserves_type) back
apply (drule listE_length) back
apply (rotate_tac -1)
apply simp
apply simp
apply (frule termination_lemma)
apply (assumption, assumption, assumption, assumption)
done
lemma kildall_properties: includes semilat
shows "\<lbrakk> acc r A; pres_type step n A; mono r step n A;
bounded step n A; ss0 \<in> list n A \<rbrakk> \<Longrightarrow>
kildall r f step ss0 \<in> list n A \<and>
stables r step (kildall r f step ss0) \<and>
ss0 <=[r] kildall r f step ss0 \<and>
(\<forall>ts\<in>list n A. ss0 <=[r] ts \<and> stables r step ts \<longrightarrow>
kildall r f step ss0 <=[r] ts)"
apply (unfold kildall_def)
apply(case_tac "iter f step ss0 (unstables r step ss0)")
apply(simp)
apply (rule iter_properties)
by (simp_all add: unstables_def stable_def)
lemma is_bcv_kildall: includes semilat
shows "\<lbrakk> acc r A; top r T; pres_type step n A; bounded step n A; mono r step n A \<rbrakk>
\<Longrightarrow> is_bcv r T step n A (kildall r f step)"
apply(unfold is_bcv_def wt_step_def)
apply(insert semilat kildall_properties[of A])
apply(simp add:stables_def)
apply clarify
apply(subgoal_tac "kildall r f step ss \<in> list n A")
prefer 2 apply (simp(no_asm_simp))
apply (rule iffI)
apply (rule_tac x = "kildall r f step ss" in bexI)
apply (rule conjI)
apply (blast)
apply (simp (no_asm_simp))
apply(assumption)
apply clarify
apply(subgoal_tac "kildall r f step ss!p <=_r ts!p")
apply simp
apply (blast intro!: le_listD less_lengthI)
done
section "Code generator setup"
text {*
Kildall's algorithm is executable. The following sections gives
alternative, directly executable implementations for those parts
of the specification that Isabelle's ML code generator does not
understand without help.
*}
lemma unstables_exec [code]:
"unstables r step ss = (UN p:{..size ss(}. if ¬stable r step ss p then {p} else {})"
apply (unfold unstables_def)
apply (rule equalityI)
apply (rule subsetI)
apply (erule CollectE)
apply (erule conjE)
apply (rule UN_I)
apply simp
apply simp
apply (rule subsetI)
apply (erule UN_E)
apply (case_tac "¬ stable r step ss p")
apply simp+
done
lemmas [code] = lessThan_0 lessThan_Suc
constdefs
some_elem :: "'a set \<Rightarrow> 'a"
"some_elem == (%S. SOME x. x : S)"
lemma iter_exec [code]:
"iter f step ss w =
while (%(ss,w). w \<noteq> {})
(%(ss,w). let p = some_elem w
in propa f (step p (ss!p)) ss (w-{p}))
(ss,w)"
by (unfold iter_def some_elem_def, rule refl)
text {*
The work list sets of the algorithm are implemented in ML as lists:
*}
types_code
set ("_ list")
consts_code
"wf" ("true?")
"{}" ("[]")
"insert" ("(_ ins _)")
"op :" ("(_ mem _)")
"op Un" ("(_ union _)")
"image" ("map")
"UNION" ("(fn A => fn f => flat (map f A))")
"Bex" ("(fn A => fn f => exists f A)")
"Ball" ("(fn A => fn f => forall f A)")
"some_elem" ("hd")
"op -" :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" ("(_ \\\\ _)")
lemmas [code ind] = rtrancl_refl converse_rtrancl_into_rtrancl
end
lemmas
Let s f == f s
[| semilat (A_1, r_1, f_1); x_1 : A_1; y_1 : A_1 |] ==> (x_1 +_f_1 y_1 = y_1) = (x_1 <=_r_1 y_1)
lemma nth_merges:
[| semilat (A, r, f); p < length ss; ss : list n A;
ALL (p, t):set ps. p < n & t : A |]
==> merges f ps ss ! p = map snd [(p', t'):ps. p' = p] ++_f ss ! p
lemma length_merges:
length (merges f ps ss) = length ss
lemma
semilat (A, r, f)
==> ALL xs.
xs : list n A -->
(ALL (p, x):set ps. p < n & x : A) --> merges f ps xs : list n A
lemma merges_preserves_type:
[| semilat (A, r, f); xs : list n A; ALL (p, x):set ps. p < n & x : A |] ==> merges f ps xs : list n A
lemma merges_pres_type:
[| semilat (A, r, f); xs : list n A; s : A; p < n; pres_type step n A;
bounded step n A |]
==> merges f (step p s) xs : list n A
lemma merges_incr_lemma:
semilat (A, r, f)
==> ALL xs.
xs : list n A -->
(ALL (p, x):set ps. p < length xs & x : A) --> xs <=[r] merges f ps xs
lemma merges_incr:
[| semilat (A, r, f); xs : list n A; ALL (p, x):set ps. p < length xs & x : A |] ==> xs <=[r] merges f ps xs
lemma merges_same_conv:
semilat (A, r, f)
==> ALL xs.
xs : list n A -->
(ALL (p, x):set ps. p < length xs & x : A) -->
(merges f ps xs = xs) = (ALL (p, x):set ps. x <=_r xs ! p)
lemma list_update_le_listI:
semilat (A, r, f)
==> set xs <= A -->
set ys <= A -->
xs <=[r] ys -->
p < length xs --> x <=_r ys ! p --> x : A --> xs[p := x +_f xs ! p] <=[r] ys
lemma
[| semilat (A, r, f); set ts <= A; set ss <= A;
ALL (p, t):set ps. t <=_r ts ! p & t : A & p < length ts; ss <=[r] ts |]
==> merges f ps ss <=[r] ts
lemma decomp_propa:
ALL (q, t):set qs. q < length ss
==> propa f qs ss w =
(merges f qs ss, {q. EX t. (q, t) : set qs & t +_f ss ! q ~= ss ! q} Un w)
lemma
[| semilat (A, r, f); pres_type step n A; bounded step n A; ss : list n A;
p : w; ALL q:w. q < n; ALL q. q < n --> q ~: w --> stable r step ss q; q < n;
ALL s'. (q, s') : set (step p (ss ! p)) --> s' +_f ss ! q = ss ! q;
q ~: w | q = p |]
==> stable r step (merges f (step p (ss ! p)) ss) q
lemma merges_bounded_lemma:
[| semilat (A, r, f); SemilatAlg.mono r step n A; bounded step n A;
ALL (p', s'):set (step p (ss ! p)). s' : A; ss : list n A; ts : list n A;
p < n; ss <=[r] ts; ALL p. p < n --> stable r step ts p |]
==> merges f (step p (ss ! p)) ss <=[r] ts
lemma
[| semilat (A, r, f); ss : list n A; ALL (q, t):set qs. q < n & t : A; p : w |]
==> ss <[r] merges f qs ss |
merges f qs ss = ss &
{q. EX t. (q, t) : set qs & t +_f ss ! q ~= ss ! q} Un (w - {p}) < w
lemma
[| semilat (A, r, f); acc r A; pres_type step n A; SemilatAlg.mono r step n A;
bounded step n A; ALL p:w0. p < n; ss0 : list n A;
ALL p. p < n --> p ~: w0 --> stable r step ss0 p |]
==> iter f step ss0 w0 = (ss', w') -->
ss' : list n A &
stables r step ss' &
ss0 <=[r] ss' &
(ALL ts:list n A. ss0 <=[r] ts & stables r step ts --> ss' <=[r] ts)
lemma
[| semilat (A, r, f); acc r A; pres_type step n A; SemilatAlg.mono r step n A;
bounded step n A; ss0 : list n A |]
==> kildall r f step ss0 : list n A &
stables r step (kildall r f step ss0) &
ss0 <=[r] kildall r f step ss0 &
(ALL ts:list n A.
ss0 <=[r] ts & stables r step ts --> kildall r f step ss0 <=[r] ts)
lemma
[| semilat (A, r, f); acc r A; top r T; pres_type step n A; bounded step n A;
SemilatAlg.mono r step n A |]
==> is_bcv r T step n A (kildall r f step)
lemma unstables_exec:
unstables r step ss =
(UN p:{..length ss(}. if ¬ stable r step ss p then {p} else {})
lemmas
{..0(} = {}
{..Suc k(} = insert k {..k(}
lemma iter_exec:
iter f step ss w =
while (%(ss, w). w ~= {})
(%(ss, w). let p = some_elem w in propa f (step p (ss ! p)) ss (w - {p}))
(ss, w)
lemmas
(a, a) : r^*
[| (a, b) : r; (b, c) : r^* |] ==> (a, c) : r^*