Up to index of Isabelle/HOL/arrays
theory Typing_Framework_JVM = Typing_Framework_err + JVMType + EffectMono + BVSpec:(* Title: HOL/MicroJava/BV/JVM.thy ID: $Id: Typing_Framework_JVM.html,v 1.1 2002/11/28 16:11:18 kleing Exp $ Author: Tobias Nipkow, Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{The Typing Framework for the JVM}\label{sec:JVM} *} theory Typing_Framework_JVM = Typing_Framework_err + JVMType + EffectMono + BVSpec: constdefs exec :: "jvm_prog \<Rightarrow> cname \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> state step_type" "exec G C maxs rT ini et bs == err_step (size bs) (\<lambda>pc. app (bs!pc) G C pc maxs (size bs) rT ini et) (\<lambda>pc. eff (bs!pc) G pc et)" locale (open) JVM_sl = fixes wf_mb and G and C and mxs and mxl fixes pTs :: "ty list" and mn and bs and et and rT fixes mxr and A and r and app and eff and step defines [simp]: "mxr \<equiv> 1+length pTs+mxl" defines [simp]: "A \<equiv> states G mxs mxr (length bs)" defines [simp]: "r \<equiv> JVMType.le" defines [simp]: "app \<equiv> \<lambda>pc. Effect.app (bs!pc) G C pc mxs (size bs) rT (mn=init) et" defines [simp]: "eff \<equiv> \<lambda>pc. Effect.eff (bs!pc) G pc et" defines [simp]: "step \<equiv> exec G C mxs rT (mn=init) et bs" locale (open) start_context = JVM_sl + assumes wf: "wf_prog wf_mb G" assumes C: "is_class G C" assumes pTs: "Init ` set pTs \<subseteq> init_tys G (size bs)" fixes this and first :: state_bool and start defines [simp]: "this \<equiv> OK (if mn=init \<and> C \<noteq> Object then PartInit C else Init (Class C))" defines [simp]: "first \<equiv> (([],this#(map (OK\<circ>Init) pTs)@(replicate mxl Err)), C=Object)" defines [simp]: "start \<equiv> OK {first}#(replicate (size bs - 1) (OK {}))" section {* Connecting JVM and Framework *} lemma special_ex_swap_lemma [iff]: "(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)" by blast lemmas [iff del] = not_None_eq lemma replace_in_setI: "\<And>n. ls \<in> list n A \<Longrightarrow> b \<in> A \<Longrightarrow> replace a b ls \<in> list n A" by (induct ls) (auto simp add: replace_def) lemma in_list_Ex [iff]: "(\<exists>n. xs \<in> list n A \<and> P xs n) = (set xs \<subseteq> A \<and> P xs (length xs))" apply (unfold list_def) apply auto done lemma eff_pres_type: "\<lbrakk>wf_prog wf_mb S; s \<subseteq> address_types S maxs maxr (length bs); p < length bs; app (bs!p) S C p maxs (length bs) rT ini et s; (a, b) \<in> set (eff (bs ! p) S p et s)\<rbrakk> \<Longrightarrow> \<forall>x \<in> b. x \<in> address_types S maxs maxr (length bs)" apply clarify apply (unfold eff_def xcpt_eff_def norm_eff_def eff_bool_def) apply (case_tac "bs!p") -- load apply (clarsimp simp add: not_Err_eq address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply clarsimp apply (drule listE_nth_in, assumption) apply fastsimp -- store apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply fastsimp -- litpush apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply clarsimp apply (fastsimp simp add: init_tys_def max_dim_def) -- new apply clarsimp apply (erule disjE) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply clarsimp apply (fastsimp simp add: replace_in_setI init_tys_def) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply clarsimp apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) -- getfield apply clarsimp apply (erule disjE) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply clarsimp apply (rule_tac x="Suc n'" in exI) apply (drule field_fields) apply simp apply (frule fields_is_type, assumption, assumption) apply (frule fields_no_RA, assumption, assumption) apply (frule fields_dim, assumption, assumption) apply (simp (no_asm) add: init_tys_def) apply simp apply (rule boundedRAI2) apply assumption apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (simp add: match_some_entry split: split_if_asm) apply (rule_tac x=1 in exI) apply fastsimp -- putfield apply clarsimp apply (erule disjE) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply fastsimp apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (simp add: match_some_entry split: split_if_asm) apply (rule_tac x=1 in exI) apply fastsimp -- checkcast apply clarsimp apply (erule disjE) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply fastsimp apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (rule_tac x=1 in exI) apply fastsimp -- invoke apply clarsimp apply (erule disjE) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (drule method_wf_mdecl, assumption+) apply (clarsimp simp add: wf_mdecl_def wf_mhead_def) apply (rule in_list_Ex [THEN iffD2]) apply (simp add: boundedRAI2) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (rule_tac x=1 in exI) apply fastsimp -- "@{text invoke_special}" apply clarsimp apply (erule disjE) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (drule method_wf_mdecl, assumption+) apply (clarsimp simp add: wf_mdecl_def wf_mhead_def) apply (rule conjI) apply (rule_tac x="Suc (length ST)" in exI) apply (fastsimp intro: replace_in_setI subcls_is_class boundedRAI2) apply (fastsimp intro: replace_in_setI subcls_is_class boundedRAI2) apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: max_dim_def) -- return apply fastsimp -- pop apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply fastsimp -- dup apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (rule_tac x="n'+2" in exI) apply simp -- "@{text dup_x1}" apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI) apply simp -- "@{text dup_x2}" apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (rule_tac x="Suc (Suc (Suc (Suc (length ST))))" in exI) apply simp -- swap apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply fastsimp -- iadd apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply fastsimp -- goto apply fastsimp -- icmpeq apply (clarsimp simp add: address_types_def) apply fastsimp -- throw apply (clarsimp simp add: address_types_def init_tys_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply clarsimp apply (rule_tac x=1 in exI) apply (fastsimp simp add: max_dim_def) -- jsr apply (clarsimp simp add: address_types_def) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: init_tys_def) apply (fastsimp simp add: max_dim_def) -- ret apply fastsimp -- ArrLoad apply clarsimp apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x="Suc (length ST)" in exI) apply (fastsimp simp add: init_tys_def boundedRAI2) apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) -- ArrStore apply clarsimp apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x="length ST" in exI) apply fastsimp apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) -- ArrLength apply clarsimp apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x="Suc (length ST)" in exI) apply (fastsimp simp add: init_tys_def max_dim_def) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) -- ArrNew apply clarsimp apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x="Suc (length ST)" in exI) apply (fastsimp simp add: init_tys_def) apply (erule disjE) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) apply clarsimp apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (clarsimp simp add: address_types_def) apply (rule_tac x=1 in exI) apply (fastsimp simp add: init_tys_def max_dim_def) done lemmas [iff] = not_None_eq lemma app_mono: "app_mono (op \<subseteq>) (\<lambda>pc. app (bs!pc) G C pc maxs (size bs) rT ini et) (length bs) (Pow (address_types G mxs mxr mpc))" apply (unfold app_mono_def lesub_def) apply clarify apply (drule in_address_types_finite)+ apply (blast intro: EffectMono.app_mono) done theorem exec_pres_type: "wf_prog wf_mb S \<Longrightarrow> pres_type (exec S C maxs rT ini et bs) (size bs) (states S maxs maxr (length bs))" apply (unfold exec_def states_def) apply (rule pres_type_lift) apply clarify apply (blast dest: eff_pres_type) done declare split_paired_All [simp del] declare eff_defs [simp del] lemma eff_mono: "\<lbrakk>wf_prog wf_mb G; t \<subseteq> address_types G maxs maxr (length bs); p < length bs; s \<subseteq> t; app (bs!p) G C p maxs (size bs) rT ini et t\<rbrakk> \<Longrightarrow> eff (bs ! p) G p et s <=|op \<subseteq>| eff (bs ! p) G p et t" apply (unfold lesubstep_type_def lesub_def) apply clarify apply (frule in_address_types_finite) apply (frule EffectMono.app_mono, assumption, assumption) apply (frule subset_trans, assumption) apply (drule eff_pres_type, assumption, assumption, assumption, assumption) apply (frule finite_subset, assumption) apply (unfold eff_def) apply clarsimp apply (erule disjE) defer apply (unfold xcpt_eff_def) apply clarsimp apply blast apply clarsimp apply (rule exI) apply (rule conjI) apply (rule disjI1) apply (rule imageI) apply (rule subsetD [OF succs_mono], assumption+) apply (unfold norm_eff_def) apply clarsimp apply (rule conjI) apply clarsimp apply (simp add: set_SOME_lists finite_imageI) apply (rule imageI) apply clarsimp apply (rule subsetD, assumption+) apply clarsimp apply (rule imageI) apply (rule subsetD, assumption+) done lemma bounded_exec: "bounded (exec G C maxs rT ini et bs) (size bs) (states G maxs maxr (size bs))" apply (unfold bounded_def exec_def err_step_def app_def) apply (auto simp add: error_def map_snd_def split: err.splits split_if_asm) done theorem exec_mono: "wf_prog wf_mb G \<Longrightarrow> mono JVMType.le (exec G C maxs rT ini et bs) (size bs) (states G maxs maxr (size bs))" apply (insert bounded_exec [of G C maxs rT ini et bs maxr]) apply (unfold exec_def JVMType.le_def JVMType.states_def) apply (rule mono_lift) apply (unfold order_def lesub_def) apply blast apply (rule app_mono) apply assumption apply clarify apply (rule eff_mono) apply assumption+ done lemma map_id [rule_format]: "(\<forall>n < length xs. f (g (xs!n)) = xs!n) \<longrightarrow> map f (map g xs) = xs" by (induct xs, auto) lemma is_type_pTs: "\<lbrakk> wf_prog wf_mb G; (C,S,fs,mdecls) \<in> set G; ((mn,pTs),rT,code) \<in> set mdecls \<rbrakk> \<Longrightarrow> Init`set pTs \<subseteq> init_tys G mpc" proof assume "wf_prog wf_mb G" "(C,S,fs,mdecls) \<in> set G" "((mn,pTs),rT,code) \<in> set mdecls" hence "wf_mdecl wf_mb G C ((mn,pTs),rT,code)" by (unfold wf_prog_def wf_cdecl_def) auto hence "\<forall>t \<in> set pTs. is_type G t \<and> noRA t \<and> dim t \<le> max_dim" by (unfold wf_mdecl_def wf_mhead_def) auto moreover fix t assume "t \<in> Init`set pTs" then obtain t' where t': "t = Init t'" and "t' \<in> set pTs" by auto ultimately have "is_type G t' \<and> noRA t' \<and> dim t' \<le> max_dim" by blast with t' show "t \<in> init_tys G mpc" by (auto simp add: init_tys_def boundedRAI2) qed lemma (in JVM_sl) wt_method_def2: "wt_method G C mn pTs rT mxs mxl bs et phi = (bs \<noteq> [] \<and> length phi = length bs \<and> check_types G mxs mxr (size bs) (map OK phi) \<and> wt_start G C mn pTs mxl phi \<and> wt_app_eff (op \<subseteq>) app eff phi)" apply (unfold wt_method_def wt_app_eff_def wt_instr_def lesub_def) apply rule apply fastsimp apply clarsimp apply (rule conjI) defer apply fastsimp apply (insert bounded_exec [of G C mxs rT "mn=init" et bs "Suc (length pTs + mxl)"]) apply (unfold exec_def bounded_def err_step_def) apply (erule allE, erule impE, assumption)+ apply clarsimp apply (drule_tac x = "OK (phi!pc)" in bspec) apply (fastsimp simp add: check_types_def) apply (fastsimp simp add: map_snd_def) done lemma jvm_prog_lift: assumes wf: "wf_prog (\<lambda>G C bd. P G C bd) G" assumes rule: "\<And>wf_mb C mn pTs C rT maxs maxl b et bd. wf_prog wf_mb G \<Longrightarrow> method (G,C) (mn,pTs) = Some (C,rT,maxs,maxl,b,et) \<Longrightarrow> is_class G C \<Longrightarrow> Init`set pTs \<subseteq> init_tys G (length b) \<Longrightarrow> bd = ((mn,pTs),rT,maxs,maxl,b,et) \<Longrightarrow> P G C bd \<Longrightarrow> Q G C bd" shows "wf_prog (\<lambda>G C bd. Q G C bd) G" proof - from wf show ?thesis apply (unfold wf_prog_def wf_cdecl_def) apply clarsimp apply (drule bspec, assumption) apply (unfold wf_mdecl_def) apply clarsimp apply (drule bspec, assumption) apply clarsimp apply (frule methd [OF wf], assumption+) apply (frule is_type_pTs [OF wf], assumption+) apply clarify apply (drule rule [OF wf], assumption+) apply (rule refl) apply assumption+ done qed end
lemma special_ex_swap_lemma:
(EX X. (EX n. X = A n & P n) & Q X) = (EX n. Q (A n) & P n)
lemmas
(x ~= None) = (EX y. x = Some y)
lemma replace_in_setI:
[| ls : list n A; b : A |] ==> replace a b ls : list n A
lemma in_list_Ex:
(EX n. xs : list n A & P xs n) = (set xs <= A & P xs (length xs))
lemma eff_pres_type:
[| wf_prog wf_mb S; s <= address_types S maxs maxr (length bs); p < length bs; app (bs ! p) S C p maxs (length bs) rT ini et s; (a, b) : set (eff (bs ! p) S p et s) |] ==> ALL x:b. x : address_types S maxs maxr (length bs)
lemmas
(x ~= None) = (EX y. x = Some y)
lemma app_mono:
app_mono op <= (%pc. app (bs ! pc) G C pc maxs (length bs) rT ini et) (length bs) (Pow (address_types G mxs mxr mpc))
theorem exec_pres_type:
wf_prog wf_mb S ==> pres_type (Typing_Framework_JVM.exec S C maxs rT ini et bs) (length bs) (states S maxs maxr (length bs))
lemma eff_mono:
[| wf_prog wf_mb G; t <= address_types G maxs maxr (length bs); p < length bs; s <= t; app (bs ! p) G C p maxs (length bs) rT ini et t |] ==> eff (bs ! p) G p et s <=|op <=| eff (bs ! p) G p et t
lemma bounded_exec:
bounded (Typing_Framework_JVM.exec G C maxs rT ini et bs) (length bs) (states G maxs maxr (length bs))
theorem exec_mono:
wf_prog wf_mb G ==> SemilatAlg.mono JVMType.le (Typing_Framework_JVM.exec G C maxs rT ini et bs) (length bs) (states G maxs maxr (length bs))
lemma map_id:
(!!n. n < length xs ==> f (g (xs ! n)) = xs ! n) ==> map f (map g xs) = xs
lemma is_type_pTs:
[| wf_prog wf_mb G; (C, S, fs, mdecls) : set G; ((mn, pTs), rT, code) : set mdecls |] ==> Init ` set pTs <= init_tys G mpc
lemma wt_method_def2:
wt_method G C mn pTs rT mxs mxl bs et phi = (bs ~= [] & length phi = length bs & check_types G mxs (1 + length pTs + mxl) (length bs) (map OK phi) & wt_start G C mn pTs mxl phi & wt_app_eff op <= (%pc. app (bs ! pc) G C pc mxs (length bs) rT (mn = init) et) (%pc. eff (bs ! pc) G pc et) phi)
lemma
[| wf_prog P G; !!wf_mb C mn pTs Ca rT maxs maxl b et bd. [| wf_prog wf_mb G; method (G, Ca) (mn, pTs) = Some (Ca, rT, maxs, maxl, b, et); is_class G Ca; Init ` set pTs <= init_tys G (length b); bd = ((mn, pTs), rT, maxs, maxl, b, et); P G Ca bd |] ==> Q G Ca bd |] ==> wf_prog Q G