Up to index of Isabelle/HOL/arrays
theory WellType = Term + WellForm:(* Title: HOL/MicroJava/J/WellType.thy ID: $Id: WellType.html,v 1.1 2002/11/28 16:11:18 kleing Exp $ Author: David von Oheimb Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Well-typedness Constraints} *} theory WellType = Term + WellForm: text {* the formulation of well-typedness of method calls given below (as well as the Java Specification 1.0) is a little too restrictive: Is does not allow methods of class Object to be called upon references of interface type. \begin{description} \item[simplifications:]\ \\ \begin{itemize} \item the type rules include all static checks on expressions and statements, e.g.\ definedness of names (of parameters, locals, fields, methods) \end{itemize} \end{description} *} text "local variables, including method parameters and This:" types lenv = "vname \<leadsto> ty" 'c env = "'c prog × lenv" syntax prg :: "'c env => 'c prog" localT :: "'c env => (vname \<leadsto> ty)" translations "prg" => "fst" "localT" => "snd" consts more_spec :: "'c prog => (ty × 'x) × ty list => (ty × 'x) × ty list => bool" appl_methds :: "'c prog => cname => sig => ((ty × ty) × ty list) set" max_spec :: "'c prog => cname => sig => ((ty × ty) × ty list) set" defs more_spec_def: "more_spec G == \<lambda>((d,h),pTs). \<lambda>((d',h'),pTs'). G\<turnstile>d\<preceq>d' \<and> list_all2 (\<lambda>T T'. G\<turnstile>T\<preceq>T') pTs pTs'" -- "applicable methods, cf. 15.11.2.1" appl_methds_def: "appl_methds G C == \<lambda>(mn, pTs). {((Class md,rT),pTs') |md rT mb pTs'. method (G,C) (mn, pTs') = Some (md,rT,mb) \<and> list_all2 (\<lambda>T T'. G\<turnstile>T\<preceq>T') pTs pTs'}" -- "maximally specific methods, cf. 15.11.2.2" max_spec_def: "max_spec G C sig == {m. m \<in>appl_methds G C sig \<and> (\<forall>m'\<in>appl_methds G C sig. more_spec G m' m --> m' = m)}" lemma max_spec2appl_meths: "x \<in> max_spec G C sig ==> x \<in> appl_methds G C sig" apply (unfold max_spec_def) apply (fast) done lemma appl_methsD: "((md,rT),pTs')\<in>appl_methds G C (mn, pTs) ==> \<exists>D b. md = Class D \<and> method (G,C) (mn, pTs') = Some (D,rT,b) \<and> list_all2 (\<lambda>T T'. G\<turnstile>T\<preceq>T') pTs pTs'" apply (unfold appl_methds_def) apply (fast) done lemmas max_spec2mheads = insertI1 [THEN [2] equalityD2 [THEN subsetD], THEN max_spec2appl_meths, THEN appl_methsD] consts typeof :: "(loc => ty option) => val => ty option" primrec "typeof dt Unit = Some (PrimT Void)" "typeof dt Null = Some NT" "typeof dt (Bool b) = Some (PrimT Boolean)" "typeof dt (Intg i) = Some (PrimT Integer)" "typeof dt (Addr a) = dt a" "typeof dt (RetAddr pc) = Some (RA pc)" lemma is_type_typeof [rule_format (no_asm), simp]: "(\<forall>a. v \<noteq> Addr a) --> (\<exists>T. typeof t v = Some T \<and> is_type G T)" apply (rule val.induct) apply auto done lemma typeof_empty_is_type [rule_format (no_asm)]: "typeof (\<lambda>a. None) v = Some T \<longrightarrow> is_type G T" apply (rule val.induct) apply auto done types java_mb = "vname list × (vname × ty) list × stmt × expr" -- "method body with parameter names, local variables, block, result expression." -- "local variables might include This, which is hidden anyway" consts ty_expr :: "java_mb env => (expr × ty ) set" ty_exprs:: "java_mb env => (expr list × ty list) set" wt_stmt :: "java_mb env => stmt set" syntax (xsymbols) ty_expr :: "java_mb env => [expr , ty ] => bool" ("_ \<turnstile> _ :: _" [51,51,51]50) ty_exprs:: "java_mb env => [expr list, ty list] => bool" ("_ \<turnstile> _ [::] _" [51,51,51]50) wt_stmt :: "java_mb env => stmt => bool" ("_ \<turnstile> _ \<surd>" [51,51 ]50) syntax ty_expr :: "java_mb env => [expr , ty ] => bool" ("_ |- _ :: _" [51,51,51]50) ty_exprs:: "java_mb env => [expr list, ty list] => bool" ("_ |- _ [::] _" [51,51,51]50) wt_stmt :: "java_mb env => stmt => bool" ("_ |- _ [ok]" [51,51 ]50) translations "E\<turnstile>e :: T" == "(e,T) \<in> ty_expr E" "E\<turnstile>e[::]T" == "(e,T) \<in> ty_exprs E" "E\<turnstile>c \<surd>" == "c \<in> wt_stmt E" inductive "ty_expr E" "ty_exprs E" "wt_stmt E" intros NewC: "[| is_class (prg E) C |] ==> E\<turnstile>NewC C::Class C" -- "cf. 15.8" -- "cf. 15.15" Cast: "[| E\<turnstile>e::Class C; is_class (prg E) D; prg E\<turnstile>C\<preceq>? D |] ==> E\<turnstile>Cast D e::Class D" -- "cf. 15.7.1" Lit: "[| typeof (\<lambda>v. None) x = Some T |] ==> E\<turnstile>Lit x::T" -- "cf. 15.13.1" LAcc: "[| localT E v = Some T; is_type (prg E) T |] ==> E\<turnstile>LAcc v::T" BinOp:"[| E\<turnstile>e1::T; E\<turnstile>e2::T; if bop = Eq then T' = PrimT Boolean else T' = T \<and> T = PrimT Integer|] ==> E\<turnstile>BinOp bop e1 e2::T'" -- "cf. 15.25, 15.25.1" LAss: "[| v ~= This; E\<turnstile>LAcc v::T; E\<turnstile>e::T'; prg E\<turnstile>T'\<preceq>T |] ==> E\<turnstile>v::=e::T'" -- "cf. 15.10.1" FAcc: "[| E\<turnstile>a::Class C; field (prg E,C) fn = Some (fd,fT) |] ==> E\<turnstile>{fd}a..fn::fT" -- "cf. 15.25, 15.25.1" FAss: "[| E\<turnstile>{fd}a..fn::T; E\<turnstile>v ::T'; prg E\<turnstile>T'\<preceq>T |] ==> E\<turnstile>{fd}a..fn:=v::T'" -- "cf. 15.11.1, 15.11.2, 15.11.3" Call: "[| E\<turnstile>a::Class C; E\<turnstile>ps[::]pTs; max_spec (prg E) C (mn, pTs) = {((md,rT),pTs')} |] ==> E\<turnstile>{C}a..mn({pTs'}ps)::rT" -- "well-typed expression lists" -- "cf. 15.11.???" Nil: "E\<turnstile>[][::][]" -- "cf. 15.11.???" Cons:"[| E\<turnstile>e::T; E\<turnstile>es[::]Ts |] ==> E\<turnstile>e#es[::]T#Ts" -- "well-typed statements" Skip:"E\<turnstile>Skip\<surd>" Expr:"[| E\<turnstile>e::T |] ==> E\<turnstile>Expr e\<surd>" Comp:"[| E\<turnstile>s1\<surd>; E\<turnstile>s2\<surd> |] ==> E\<turnstile>s1;; s2\<surd>" -- "cf. 14.8" Cond:"[| E\<turnstile>e::PrimT Boolean; E\<turnstile>s1\<surd>; E\<turnstile>s2\<surd> |] ==> E\<turnstile>If(e) s1 Else s2\<surd>" -- "cf. 14.10" Loop:"[| E\<turnstile>e::PrimT Boolean; E\<turnstile>s\<surd> |] ==> E\<turnstile>While(e) s\<surd>" constdefs wf_java_mdecl :: "java_mb prog => cname => java_mb mdecl => bool" "wf_java_mdecl G C == \<lambda>((mn,pTs),rT,(pns,lvars,blk,res)). length pTs = length pns \<and> distinct pns \<and> unique lvars \<and> This \<notin> set pns \<and> This \<notin> set (map fst lvars) \<and> (\<forall>pn\<in>set pns. map_of lvars pn = None) \<and> (\<forall>(vn,T)\<in>set lvars. is_type G T) & (let E = (G,map_of lvars(pns[\<mapsto>]pTs)(This\<mapsto>Class C)) in E\<turnstile>blk\<surd> \<and> (\<exists>T. E\<turnstile>res::T \<and> G\<turnstile>T\<preceq>rT))" syntax wf_java_prog :: "java_mb prog => bool" translations "wf_java_prog" == "wf_prog wf_java_mdecl" lemma wt_is_type: "wf_prog wf_mb G \<Longrightarrow> ((G,L)\<turnstile>e::T \<longrightarrow> is_type G T) \<and> ((G,L)\<turnstile>es[::]Ts \<longrightarrow> Ball (set Ts) (is_type G)) \<and> ((G,L)\<turnstile>c \<surd> \<longrightarrow> True)" apply (rule ty_expr_ty_exprs_wt_stmt.induct) apply auto apply ( erule typeof_empty_is_type) apply ( simp split add: split_if_asm) apply ( drule field_fields) apply ( drule (1) fields_is_type) apply ( simp (no_asm_simp)) apply (assumption) apply (auto dest!: max_spec2mheads method_wf_mdecl is_type_rTI simp add: wf_mdecl_def) done lemmas ty_expr_is_type = wt_is_type [THEN conjunct1,THEN mp, COMP swap_prems_rl] end
lemma max_spec2appl_meths:
x : max_spec G C sig ==> x : appl_methds G C sig
lemma appl_methsD:
((md, rT), pTs') : appl_methds G C (mn, pTs) ==> EX D b. md = Class D & method (G, C) (mn, pTs') = Some (D, rT, b) & list_all2 (%T T'. G |- T <= T') pTs pTs'
lemmas max_spec2mheads:
max_spec G C (mn, pTs) = insert ((md, rT), pTs') B_4 ==> EX D b. md = Class D & method (G, C) (mn, pTs') = Some (D, rT, b) & list_all2 (%T T'. G |- T <= T') pTs pTs'
lemma is_type_typeof:
ALL a. v ~= Addr a ==> EX T. typeof t v = Some T & is_type G T
lemma typeof_empty_is_type:
typeof (%a. None) v = Some T ==> is_type G T
lemma wt_is_type:
wf_prog wf_mb G ==> ((G, L) |- e :: T --> is_type G T) & ((G, L) |- es [::] Ts --> Ball (set Ts) (is_type G)) & ((G, L) |- c [ok] --> True)
lemmas ty_expr_is_type:
[| (G_2, L_2) |- e_2 :: T_2; wf_prog wf_mb_2 G_2 |] ==> is_type G_2 T_2