Up to index of Isabelle/HOL/exceptions
theory BVSpec = Effect:(* Title: HOL/MicroJava/BV/BVSpec.thy ID: $Id: BVSpec.html,v 1.1 2002/11/28 13:16:31 kleing Exp $ Author: Cornelia Pusch, Gerwin Klein Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{The Bytecode Verifier}\label{sec:BVSpec} *} theory BVSpec = Effect: text {* This theory contains a specification of the BV. The specification describes correct typings of method bodies; it corresponds to type \emph{checking}. *} constdefs -- "The program counter will always be inside the method:" check_bounded :: "instr list \<Rightarrow> exception_table \<Rightarrow> bool" "check_bounded ins et \<equiv> (\<forall>pc < length ins. \<forall>pc' \<in> set (succs (ins!pc) pc). pc' < length ins) \<and> (\<forall>e \<in> set et. fst (snd (snd e)) < length ins)" -- "The method type only contains declared classes:" check_types :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state list \<Rightarrow> bool" "check_types G mxs mxr phi \<equiv> set phi \<subseteq> states G mxs mxr" -- "An instruction is welltyped if it is applicable and its effect" -- "is compatible with the type at all successor instructions:" wt_instr :: "[instr,jvm_prog,ty,method_type,nat,p_count, exception_table,p_count] \<Rightarrow> bool" "wt_instr i G rT phi mxs max_pc et pc \<equiv> app i G mxs rT pc et (phi!pc) \<and> (\<forall>(pc',s') \<in> set (eff i G pc et (phi!pc)). pc' < max_pc \<and> G \<turnstile> s' <=' phi!pc')" -- {* The type at @{text "pc=0"} conforms to the method calling convention: *} wt_start :: "[jvm_prog,cname,ty list,nat,method_type] \<Rightarrow> bool" "wt_start G C pTs mxl phi == G \<turnstile> Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)) <=' phi!0" -- "A method is welltyped if the body is not empty, if execution does not" -- "leave the body, if the method type covers all instructions and mentions" -- "declared classes only, if the method calling convention is respected, and" -- "if all instructions are welltyped." wt_method :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list, exception_table,method_type] \<Rightarrow> bool" "wt_method G C pTs rT mxs mxl ins et phi \<equiv> let max_pc = length ins in 0 < max_pc \<and> length phi = length ins \<and> check_bounded ins et \<and> check_types G mxs (1+length pTs+mxl) (map OK phi) \<and> wt_start G C pTs mxl phi \<and> (\<forall>pc. pc<max_pc \<longrightarrow> wt_instr (ins!pc) G rT phi mxs max_pc et pc)" -- "A program is welltyped if it is wellformed and all methods are welltyped" wt_jvm_prog :: "[jvm_prog,prog_type] \<Rightarrow> bool" "wt_jvm_prog G phi == wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_method G C (snd sig) rT maxs maxl b et (phi C sig)) G" lemma check_boundedD: "\<lbrakk> check_bounded ins et; pc < length ins; (pc',s') \<in> set (eff (ins!pc) G pc et s) \<rbrakk> \<Longrightarrow> pc' < length ins" apply (unfold eff_def) apply simp apply (unfold check_bounded_def) apply clarify apply (erule disjE) apply blast apply (erule allE, erule impE, assumption) apply (unfold xcpt_eff_def) apply clarsimp apply (drule xcpt_names_in_et) apply clarify apply (drule bspec, assumption) apply simp done lemma wt_jvm_progD: "wt_jvm_prog G phi \<Longrightarrow> (\<exists>wt. wf_prog wt G)" by (unfold wt_jvm_prog_def, blast) lemma wt_jvm_prog_impl_wt_instr: "\<lbrakk> wt_jvm_prog G phi; is_class G C; method (G,C) sig = Some (C,rT,maxs,maxl,ins,et); pc < length ins \<rbrakk> \<Longrightarrow> wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc" by (unfold wt_jvm_prog_def, drule method_wf_mdecl, simp, simp, simp add: wf_mdecl_def wt_method_def) text {* We could leave out the check @{term "pc' < max_pc"} in the definition of @{term wt_instr} in the context of @{term wt_method}. *} lemma wt_instr_def2: "\<lbrakk> wt_jvm_prog G Phi; is_class G C; method (G,C) sig = Some (C,rT,maxs,maxl,ins,et); pc < length ins; i = ins!pc; phi = Phi C sig; max_pc = length ins \<rbrakk> \<Longrightarrow> wt_instr i G rT phi maxs max_pc et pc = (app i G maxs rT pc et (phi!pc) \<and> (\<forall>(pc',s') \<in> set (eff i G pc et (phi!pc)). G \<turnstile> s' <=' phi!pc'))" apply (simp add: wt_instr_def) apply (unfold wt_jvm_prog_def) apply (drule method_wf_mdecl) apply (simp, simp, simp add: wf_mdecl_def wt_method_def) apply (auto dest: check_boundedD) done lemma wt_jvm_prog_impl_wt_start: "\<lbrakk> wt_jvm_prog G phi; is_class G C; method (G,C) sig = Some (C,rT,maxs,maxl,ins,et) \<rbrakk> \<Longrightarrow> 0 < (length ins) \<and> wt_start G C (snd sig) maxl (phi C sig)" by (unfold wt_jvm_prog_def, drule method_wf_mdecl, simp, simp, simp add: wf_mdecl_def wt_method_def) end
lemma check_boundedD:
[| check_bounded ins et; pc < length ins; (pc', s') : set (eff (ins ! pc) G pc et s) |] ==> pc' < length ins
lemma wt_jvm_progD:
wt_jvm_prog G phi ==> EX wt. wf_prog wt G
lemma wt_jvm_prog_impl_wt_instr:
[| wt_jvm_prog G phi; is_class G C; method (G, C) sig = Some (C, rT, maxs, maxl, ins, et); pc < length ins |] ==> wt_instr (ins ! pc) G rT (phi C sig) maxs (length ins) et pc
lemma wt_instr_def2:
[| wt_jvm_prog G Phi; is_class G C; method (G, C) sig = Some (C, rT, maxs, maxl, ins, et); pc < length ins; i = ins ! pc; phi = Phi C sig; max_pc = length ins |] ==> wt_instr i G rT phi maxs max_pc et pc = (app i G maxs rT pc et (phi ! pc) & (ALL (pc', s'):set (eff i G pc et (phi ! pc)). G |- s' <=' phi ! pc'))
lemma wt_jvm_prog_impl_wt_start:
[| wt_jvm_prog G phi; is_class G C; method (G, C) sig = Some (C, rT, maxs, maxl, ins, et) |] ==> 0 < length ins & wt_start G C (snd sig) maxl (phi C sig)