Up to index of Isabelle/HOL/exceptions
theory Decl = Type:(* Title: HOL/MicroJava/J/Decl.thy ID: $Id: Decl.html,v 1.1 2002/11/28 13:16:31 kleing Exp $ Author: David von Oheimb Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Class Declarations and Programs} *} theory Decl = Type: types fdecl = "vname × ty" -- "field declaration, cf. 8.3 (, 9.3)" sig = "mname × ty list" -- "signature of a method, cf. 8.4.2" 'c mdecl = "sig × ty × 'c" -- "method declaration in a class" 'c class = "cname × fdecl list × 'c mdecl list" -- "class = superclass, fields, methods" 'c cdecl = "cname × 'c class" -- "class declaration, cf. 8.1" 'c prog = "'c cdecl list" -- "program" translations "fdecl" <= (type) "vname × ty" "sig" <= (type) "mname × ty list" "mdecl c" <= (type) "sig × ty × c" "class c" <= (type) "cname × fdecl list × (c mdecl) list" "cdecl c" <= (type) "cname × (c class)" "prog c" <= (type) "(c cdecl) list" constdefs class :: "'c prog => (cname \<leadsto> 'c class)" "class \<equiv> map_of" is_class :: "'c prog => cname => bool" "is_class G C \<equiv> class G C \<noteq> None" lemma finite_is_class: "finite {C. is_class G C}" apply (unfold is_class_def class_def) apply (fold dom_def) apply (rule finite_dom_map_of) done consts is_type :: "'c prog => ty => bool" primrec "is_type G (PrimT pt) = True" "is_type G (RefT t) = (case t of NullT => True | ClassT C => is_class G C)" end
lemma finite_is_class:
finite (Collect (is_class G))