Up to index of Isabelle/HOL/exceptions
theory LBVSpec = SemilatAlg + Opt:(* Title: HOL/MicroJava/BV/LBVSpec.thy ID: $Id: LBVSpec.html,v 1.1 2002/11/28 13:16:31 kleing Exp $ Author: Gerwin Klein Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{The Lightweight Bytecode Verifier} *} theory LBVSpec = SemilatAlg + Opt: types 's certificate = "'s list" consts merge :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> nat \<Rightarrow> (nat × 's) list \<Rightarrow> 's \<Rightarrow> 's" primrec "merge cert f r T pc [] x = x" "merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in if pc'=pc+1 then s' +_f x else if s' <=_r (cert!pc') then x else T)" constdefs wtl_inst :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" "wtl_inst cert f r T step pc s \<equiv> merge cert f r T pc (step pc s) (cert!(pc+1))" wtl_cert :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" "wtl_cert cert f r T B step pc s \<equiv> if cert!pc = B then wtl_inst cert f r T step pc s else if s <=_r (cert!pc) then wtl_inst cert f r T step pc (cert!pc) else T" consts wtl_inst_list :: "'a list \<Rightarrow> 's certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" primrec "wtl_inst_list [] cert f r T B step pc s = s" "wtl_inst_list (i#is) cert f r T B step pc s = (let s' = wtl_cert cert f r T B step pc s in if s' = T \<or> s = T then T else wtl_inst_list is cert f r T B step (pc+1) s')" constdefs cert_ok :: "'s certificate \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's set \<Rightarrow> bool" "cert_ok cert n T B A \<equiv> (\<forall>i < n. cert!i \<in> A \<and> cert!i \<noteq> T) \<and> (cert!n = B)" constdefs bottom :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool" "bottom r B \<equiv> \<forall>x. B <=_r x" locale (open) lbv = semilat + fixes T :: "'a" ("\<top>") fixes B :: "'a" ("\<bottom>") fixes step :: "'a step_type" assumes top: "top r \<top>" assumes T_A: "\<top> \<in> A" assumes bot: "bottom r \<bottom>" assumes B_A: "\<bottom> \<in> A" fixes merge :: "'a certificate \<Rightarrow> nat \<Rightarrow> (nat × 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" defines mrg_def: "merge cert \<equiv> LBVSpec.merge cert f r \<top>" fixes wti :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" defines wti_def: "wti cert \<equiv> wtl_inst cert f r \<top> step" fixes wtc :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" defines wtc_def: "wtc cert \<equiv> wtl_cert cert f r \<top> \<bottom> step" fixes wtl :: "'b list \<Rightarrow> 'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" defines wtl_def: "wtl ins cert \<equiv> wtl_inst_list ins cert f r \<top> \<bottom> step" lemma (in lbv) wti: "wti c pc s \<equiv> merge c pc (step pc s) (c!(pc+1))" by (simp add: wti_def mrg_def wtl_inst_def) lemma (in lbv) wtc: "wtc c pc s \<equiv> if c!pc = \<bottom> then wti c pc s else if s <=_r c!pc then wti c pc (c!pc) else \<top>" by (unfold wtc_def wti_def wtl_cert_def) lemma cert_okD1 [intro?]: "cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<in> A" by (unfold cert_ok_def) fast lemma cert_okD2 [intro?]: "cert_ok c n T B A \<Longrightarrow> c!n = B" by (simp add: cert_ok_def) lemma cert_okD3 [intro?]: "cert_ok c n T B A \<Longrightarrow> B \<in> A \<Longrightarrow> pc < n \<Longrightarrow> c!Suc pc \<in> A" by (drule Suc_leI) (auto simp add: le_eq_less_or_eq dest: cert_okD1 cert_okD2) lemma cert_okD4 [intro?]: "cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<noteq> T" by (simp add: cert_ok_def) declare Let_def [simp] section "more semilattice lemmas" lemma (in lbv) sup_top [simp, elim]: assumes x: "x \<in> A" shows "x +_f \<top> = \<top>" proof - from top have "x +_f \<top> <=_r \<top>" .. moreover from x have "\<top> <=_r x +_f \<top>" .. ultimately show ?thesis .. qed lemma (in lbv) plusplussup_top [simp, elim]: "set xs \<subseteq> A \<Longrightarrow> xs ++_f \<top> = \<top>" by (induct xs) auto lemma (in semilat) pp_ub1': assumes S: "snd`set S \<subseteq> A" assumes y: "y \<in> A" and ab: "(a, b) \<in> set S" shows "b <=_r map snd [(p', t')\<in>S . p' = a] ++_f y" proof - from S have "\<forall>(x,y) \<in> set S. y \<in> A" by auto with semilat y ab show ?thesis by - (rule ub1') qed lemma (in lbv) bottom_le [simp, intro]: "\<bottom> <=_r x" by (insert bot) (simp add: bottom_def) lemma (in lbv) le_bottom [simp]: "x <=_r \<bottom> = (x = \<bottom>)" by (blast intro: antisym_r) section "merge" lemma (in lbv) merge_Nil [simp]: "merge c pc [] x = x" by (simp add: mrg_def) lemma (in lbv) merge_Cons [simp]: "merge c pc (l#ls) x = merge c pc ls (if fst l=pc+1 then snd l +_f x else if snd l <=_r (c!fst l) then x else \<top>)" by (simp add: mrg_def split_beta) lemma (in lbv) merge_Err [simp]: "snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss \<top> = \<top>" by (induct ss) auto lemma (in lbv) merge_not_top: "\<And>x. snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss x \<noteq> \<top> \<Longrightarrow> \<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc'))" (is "\<And>x. ?set ss \<Longrightarrow> ?merge ss x \<Longrightarrow> ?P ss") proof (induct ss) show "?P []" by simp next fix x ls l assume "?set (l#ls)" then obtain set: "snd`set ls \<subseteq> A" by simp assume merge: "?merge (l#ls) x" moreover obtain pc' s' where [simp]: "l = (pc',s')" by (cases l) ultimately obtain x' where "?merge ls x'" by simp assume "\<And>x. ?set ls \<Longrightarrow> ?merge ls x \<Longrightarrow> ?P ls" hence "?P ls" . moreover from merge set have "pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc')" by (simp split: split_if_asm) ultimately show "?P (l#ls)" by simp qed lemma (in lbv) merge_def: shows "\<And>x. x \<in> A \<Longrightarrow> snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss x = (if \<forall>(pc',s') \<in> set ss. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc' then map snd [(p',t') \<in> ss. p'=pc+1] ++_f x else \<top>)" (is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?merge ss x = ?if ss x" is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?P ss x") proof (induct ss) fix x show "?P [] x" by simp next fix x assume x: "x \<in> A" fix l::"nat × 'a" and ls assume "snd`set (l#ls) \<subseteq> A" then obtain l: "snd l \<in> A" and ls: "snd`set ls \<subseteq> A" by auto assume "\<And>x. x \<in> A \<Longrightarrow> snd`set ls \<subseteq> A \<Longrightarrow> ?P ls x" hence IH: "\<And>x. x \<in> A \<Longrightarrow> ?P ls x" . obtain pc' s' where [simp]: "l = (pc',s')" by (cases l) hence "?merge (l#ls) x = ?merge ls (if pc'=pc+1 then s' +_f x else if s' <=_r c!pc' then x else \<top>)" (is "?merge (l#ls) x = ?merge ls ?if'") by simp also have "\<dots> = ?if ls ?if'" proof - from l have "s' \<in> A" by simp with x have "s' +_f x \<in> A" by simp with x have "?if' \<in> A" by auto hence "?P ls ?if'" by (rule IH) thus ?thesis by simp qed also have "\<dots> = ?if (l#ls) x" proof (cases "\<forall>(pc', s')\<in>set (l#ls). pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'") case True hence "\<forall>(pc', s')\<in>set ls. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'" by auto moreover from True have "map snd [(p',t')\<in>ls . p'=pc+1] ++_f ?if' = (map snd [(p',t')\<in>l#ls . p'=pc+1] ++_f x)" by simp ultimately show ?thesis using True by simp next case False moreover from ls have "set (map snd [(p', t')\<in>ls . p' = Suc pc]) \<subseteq> A" by auto ultimately show ?thesis by auto qed finally show "?P (l#ls) x" . qed lemma (in lbv) merge_not_top_s: assumes x: "x \<in> A" and ss: "snd`set ss \<subseteq> A" assumes m: "merge c pc ss x \<noteq> \<top>" shows "merge c pc ss x = (map snd [(p',t') \<in> ss. p'=pc+1] ++_f x)" proof - from ss m have "\<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r c!pc')" by (rule merge_not_top) with x ss m show ?thesis by - (drule merge_def, auto split: split_if_asm) qed section "wtl-inst-list" lemmas [iff] = not_Err_eq lemma (in lbv) wtl_Nil [simp]: "wtl [] c pc s = s" by (simp add: wtl_def) lemma (in lbv) wtl_Cons [simp]: "wtl (i#is) c pc s = (let s' = wtc c pc s in if s' = \<top> \<or> s = \<top> then \<top> else wtl is c (pc+1) s')" by (simp add: wtl_def wtc_def) lemma (in lbv) wtl_Cons_not_top: "wtl (i#is) c pc s \<noteq> \<top> = (wtc c pc s \<noteq> \<top> \<and> s \<noteq> T \<and> wtl is c (pc+1) (wtc c pc s) \<noteq> \<top>)" by (auto simp del: split_paired_Ex) lemma (in lbv) wtl_top [simp]: "wtl ls c pc \<top> = \<top>" by (cases ls) auto lemma (in lbv) wtl_not_top: "wtl ls c pc s \<noteq> \<top> \<Longrightarrow> s \<noteq> \<top>" by (cases "s=\<top>") auto lemma (in lbv) wtl_append [simp]: "\<And>pc s. wtl (a@b) c pc s = wtl b c (pc+length a) (wtl a c pc s)" by (induct a) auto lemma (in lbv) wtl_take: "wtl is c pc s \<noteq> \<top> \<Longrightarrow> wtl (take pc' is) c pc s \<noteq> \<top>" (is "?wtl is \<noteq> _ \<Longrightarrow> _") proof - assume "?wtl is \<noteq> \<top>" hence "?wtl (take pc' is @ drop pc' is) \<noteq> \<top>" by simp thus ?thesis by (auto dest!: wtl_not_top simp del: append_take_drop_id) qed lemma take_Suc: "\<forall>n. n < length l \<longrightarrow> take (Suc n) l = (take n l)@[l!n]" (is "?P l") proof (induct l) show "?P []" by simp next fix x xs assume IH: "?P xs" show "?P (x#xs)" proof (intro strip) fix n assume "n < length (x#xs)" with IH show "take (Suc n) (x # xs) = take n (x # xs) @ [(x # xs) ! n]" by (cases n, auto) qed qed lemma (in lbv) wtl_Suc: assumes suc: "pc+1 < length is" assumes wtl: "wtl (take pc is) c 0 s \<noteq> \<top>" shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)" proof - from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc) with suc wtl show ?thesis by (simp add: min_def) qed lemma (in lbv) wtl_all: assumes all: "wtl is c 0 s \<noteq> \<top>" (is "?wtl is \<noteq> _") assumes pc: "pc < length is" shows "wtc c pc (wtl (take pc is) c 0 s) \<noteq> \<top>" proof - from pc have "0 < length (drop pc is)" by simp then obtain i r where Cons: "drop pc is = i#r" by (auto simp add: neq_Nil_conv simp del: length_drop) hence "i#r = drop pc is" .. with all have take: "?wtl (take pc is@i#r) \<noteq> \<top>" by simp from pc have "is!pc = drop pc is ! 0" by simp with Cons have "is!pc = i" by simp with take pc show ?thesis by (auto simp add: min_def split: split_if_asm) qed section "preserves-type" lemma (in lbv) merge_pres: assumes s0: "snd`set ss \<subseteq> A" and x: "x \<in> A" shows "merge c pc ss x \<in> A" proof - from s0 have "set (map snd [(p', t')\<in>ss . p'=pc+1]) \<subseteq> A" by auto with x have "(map snd [(p', t')\<in>ss . p'=pc+1] ++_f x) \<in> A" by (auto intro!: plusplus_closed) with s0 x show ?thesis by (simp add: merge_def T_A) qed lemma pres_typeD2: "pres_type step n A \<Longrightarrow> s \<in> A \<Longrightarrow> p < n \<Longrightarrow> snd`set (step p s) \<subseteq> A" by auto (drule pres_typeD) lemma (in lbv) wti_pres [intro?]: assumes pres: "pres_type step n A" assumes cert: "c!(pc+1) \<in> A" assumes s_pc: "s \<in> A" "pc < n" shows "wti c pc s \<in> A" proof - from pres s_pc have "snd`set (step pc s) \<subseteq> A" by (rule pres_typeD2) with cert show ?thesis by (simp add: wti merge_pres) qed lemma (in lbv) wtc_pres: assumes "pres_type step n A" assumes "c!pc \<in> A" and "c!(pc+1) \<in> A" assumes "s \<in> A" and "pc < n" shows "wtc c pc s \<in> A" proof - have "wti c pc s \<in> A" .. moreover have "wti c pc (c!pc) \<in> A" .. ultimately show ?thesis using T_A by (simp add: wtc) qed lemma (in lbv) wtl_pres: assumes pres: "pres_type step (length is) A" assumes cert: "cert_ok c (length is) \<top> \<bottom> A" assumes s: "s \<in> A" assumes all: "wtl is c 0 s \<noteq> \<top>" shows "pc < length is \<Longrightarrow> wtl (take pc is) c 0 s \<in> A" (is "?len pc \<Longrightarrow> ?wtl pc \<in> A") proof (induct pc) from s show "?wtl 0 \<in> A" by simp next fix n assume "Suc n < length is" then obtain n: "n < length is" by simp assume "n < length is \<Longrightarrow> ?wtl n \<in> A" hence "?wtl n \<in> A" . moreover from cert have "c!n \<in> A" by (rule cert_okD1) moreover have n1: "n+1 < length is" by simp with cert have "c!(n+1) \<in> A" by (rule cert_okD1) ultimately have "wtc c n (?wtl n) \<in> A" by - (rule wtc_pres) also from all n have "?wtl n \<noteq> \<top>" by - (rule wtl_take) with n1 have "wtc c n (?wtl n) = ?wtl (n+1)" by (rule wtl_Suc [symmetric]) finally show "?wtl (Suc n) \<in> A" by simp qed end
lemma wti:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> wtl_inst c f r T step pc s == merge c f r T pc (step pc s) (c ! (pc + 1))
lemma wtc:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> wtl_cert c f r T B step pc s == if c ! pc = B then wtl_inst c f r T step pc s else if s <=_r c ! pc then wtl_inst c f r T step pc (c ! pc) else T
lemma cert_okD1:
[| cert_ok c n T B A; pc < n |] ==> c ! pc : A
lemma cert_okD2:
cert_ok c n T B A ==> c ! n = B
lemma cert_okD3:
[| cert_ok c n T B A; B : A; pc < n |] ==> c ! Suc pc : A
lemma cert_okD4:
[| cert_ok c n T B A; pc < n |] ==> c ! pc ~= T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x : A |] ==> x +_f T = T
lemma plusplussup_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; set xs <= A |] ==> xs ++_f T = T
lemma
[| semilat (A, r, f); snd ` set S <= A; y : A; (a, b) : set S |] ==> b <=_r map snd [(p', t'):S. p' = a] ++_f y
lemma bottom_le:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> B <=_r x
lemma le_bottom:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> (x <=_r B) = (x = B)
lemma merge_Nil:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> merge c f r T pc [] x = x
lemma merge_Cons:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> merge c f r T pc (l # ls) x = merge c f r T pc ls (if fst l = pc + 1 then snd l +_f x else if snd l <=_r c ! fst l then x else T)
lemma merge_Err:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; snd ` set ss <= A |] ==> merge c f r T pc ss T = T
lemma merge_not_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; snd ` set ss <= A; merge c f r T pc ss x ~= T |] ==> ALL (pc', s'):set ss. pc' ~= pc + 1 --> s' <=_r c ! pc'
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x : A; snd ` set ss <= A |] ==> merge c f r T pc ss x = (if ALL (pc', s'):set ss. pc' ~= pc + 1 --> s' <=_r c ! pc' then map snd [(p', t'):ss. p' = pc + 1] ++_f x else T)
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x : A; snd ` set ss <= A; merge c f r T pc ss x ~= T |] ==> merge c f r T pc ss x = map snd [(p', t'):ss. p' = pc + 1] ++_f x
lemmas
(x ~= Err) = (EX a. x = OK a)
lemma wtl_Nil:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> wtl_inst_list [] c f r T B step pc s = s
lemma wtl_Cons:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> wtl_inst_list (i # is) c f r T B step pc s = (let s' = wtl_cert c f r T B step pc s in if s' = T | s = T then T else wtl_inst_list is c f r T B step (pc + 1) s')
lemma wtl_Cons_not_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> (wtl_inst_list (i # is) c f r T B step pc s ~= T) = (wtl_cert c f r T B step pc s ~= T & s ~= T & wtl_inst_list is c f r T B step (pc + 1) (wtl_cert c f r T B step pc s) ~= T)
lemma wtl_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> wtl_inst_list ls c f r T B step pc T = T
lemma wtl_not_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; wtl_inst_list ls c f r T B step pc s ~= T |] ==> s ~= T
lemma wtl_append:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> wtl_inst_list (a @ b) c f r T B step pc s = wtl_inst_list b c f r T B step (pc + length a) (wtl_inst_list a c f r T B step pc s)
lemma wtl_take:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; wtl_inst_list is c f r T B step pc s ~= T |] ==> wtl_inst_list (take pc' is) c f r T B step pc s ~= T
lemma take_Suc:
ALL n. n < length l --> take (Suc n) l = take n l @ [l ! n]
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pc + 1 < length is; wtl_inst_list (take pc is) c f r T B step 0 s ~= T |] ==> wtl_inst_list (take (pc + 1) is) c f r T B step 0 s = wtl_cert c f r T B step pc (wtl_inst_list (take pc is) c f r T B step 0 s)
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; wtl_inst_list is c f r T B step 0 s ~= T; pc < length is |] ==> wtl_cert c f r T B step pc (wtl_inst_list (take pc is) c f r T B step 0 s) ~= T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; snd ` set ss <= A; x : A |] ==> merge c f r T pc ss x : A
lemma pres_typeD2:
[| pres_type step n A; s : A; p < n |] ==> snd ` set (step p s) <= A
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pres_type step n A; c ! (pc + 1) : A; s : A; pc < n |] ==> wtl_inst c f r T step pc s : A
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pres_type step n A; c ! pc : A; c ! (pc + 1) : A; s : A; pc < n |] ==> wtl_cert c f r T B step pc s : A
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pres_type step (length is) A; cert_ok c (length is) T B A; s : A; wtl_inst_list is c f r T B step 0 s ~= T; pc < length is |] ==> wtl_inst_list (take pc is) c f r T B step 0 s : A