Theory Listn

Up to index of Isabelle/HOL/exceptions

theory Listn = Err:
(*  Title:      HOL/MicroJava/BV/Listn.thy
    ID:         $Id: Listn.html,v 1.1 2002/11/28 13:16:31 kleing Exp $
    Author:     Tobias Nipkow
    Copyright   2000 TUM

Lists of a fixed length
*)

header {* \isaheader{Fixed Length Lists} *}

theory Listn = Err:

constdefs

 list :: "nat \<Rightarrow> 'a set \<Rightarrow> 'a list set"
"list n A == {xs. length xs = n & set xs <= A}"

 le :: "'a ord \<Rightarrow> ('a list)ord"
"le r == list_all2 (%x y. x <=_r y)"

syntax "@lesublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool"
       ("(_ /<=[_] _)" [50, 0, 51] 50)
syntax "@lesssublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool"
       ("(_ /<[_] _)" [50, 0, 51] 50)
translations
 "x <=[r] y" == "x <=_(Listn.le r) y"
 "x <[r] y"  == "x <_(Listn.le r) y"

constdefs
 map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
"map2 f == (%xs ys. map (split f) (zip xs ys))"

syntax "@plussublist" :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b list \<Rightarrow> 'c list"
       ("(_ /+[_] _)" [65, 0, 66] 65)
translations  "x +[f] y" == "x +_(map2 f) y"

consts coalesce :: "'a err list \<Rightarrow> 'a list err"
primrec
"coalesce [] = OK[]"
"coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)"

constdefs
 sl :: "nat \<Rightarrow> 'a sl \<Rightarrow> 'a list sl"
"sl n == %(A,r,f). (list n A, le r, map2 f)"

 sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list err"
"sup f == %xs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err"

 upto_esl :: "nat \<Rightarrow> 'a esl \<Rightarrow> 'a list esl"
"upto_esl m == %(A,r,f). (Union{list n A |n. n <= m}, le r, sup f)"

lemmas [simp] = set_update_subsetI

lemma unfold_lesub_list:
  "xs <=[r] ys == Listn.le r xs ys"
  by (simp add: lesub_def)

lemma Nil_le_conv [iff]:
  "([] <=[r] ys) = (ys = [])"
apply (unfold lesub_def Listn.le_def)
apply simp
done

lemma Cons_notle_Nil [iff]: 
  "~ x#xs <=[r] []"
apply (unfold lesub_def Listn.le_def)
apply simp
done


lemma Cons_le_Cons [iff]:
  "x#xs <=[r] y#ys = (x <=_r y & xs <=[r] ys)"
apply (unfold lesub_def Listn.le_def)
apply simp
done

lemma Cons_less_Conss [simp]:
  "order r \<Longrightarrow> 
  x#xs <_(Listn.le r) y#ys = 
  (x <_r y & xs <=[r] ys  |  x = y & xs <_(Listn.le r) ys)"
apply (unfold lesssub_def)
apply blast
done  

lemma list_update_le_cong:
  "\<lbrakk> i<size xs; xs <=[r] ys; x <=_r y \<rbrakk> \<Longrightarrow> xs[i:=x] <=[r] ys[i:=y]";
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (simp add: list_all2_conv_all_nth nth_list_update)
done


lemma le_listD:
  "\<lbrakk> xs <=[r] ys; p < size xs \<rbrakk> \<Longrightarrow> xs!p <=_r ys!p"
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_conv_all_nth)
done

lemma le_list_refl:
  "!x. x <=_r x \<Longrightarrow> xs <=[r] xs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done

lemma le_list_trans:
  "\<lbrakk> order r; xs <=[r] ys; ys <=[r] zs \<rbrakk> \<Longrightarrow> xs <=[r] zs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply clarify
apply simp
apply (blast intro: order_trans)
done

lemma le_list_antisym:
  "\<lbrakk> order r; xs <=[r] ys; ys <=[r] xs \<rbrakk> \<Longrightarrow> xs = ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply (rule nth_equalityI)
 apply blast
apply clarify
apply simp
apply (blast intro: order_antisym)
done

lemma order_listI [simp, intro!]:
  "order r \<Longrightarrow> order(Listn.le r)"
apply (subst order_def)
apply (blast intro: le_list_refl le_list_trans le_list_antisym
             dest: order_refl)
done


lemma lesub_list_impl_same_size [simp]:
  "xs <=[r] ys \<Longrightarrow> size ys = size xs"  
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_conv_all_nth)
done 

lemma lesssub_list_impl_same_size:
  "xs <_(Listn.le r) ys \<Longrightarrow> size ys = size xs"
apply (unfold lesssub_def)
apply auto
done  

lemma le_list_appendI:
  "\<And>b c d. a <=[r] b \<Longrightarrow> c <=[r] d \<Longrightarrow> a@c <=[r] b@d"
apply (induct a)
 apply simp
apply (case_tac b)
apply auto
done

lemma le_listI:
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> a!n <=_r b!n) \<Longrightarrow> a <=[r] b"
  apply (unfold lesub_def Listn.le_def)
  apply (simp add: list_all2_conv_all_nth)
  done

lemma listI:
  "\<lbrakk> length xs = n; set xs <= A \<rbrakk> \<Longrightarrow> xs : list n A"
apply (unfold list_def)
apply blast
done

lemma listE_length [simp]:
   "xs : list n A \<Longrightarrow> length xs = n"
apply (unfold list_def)
apply blast
done 

lemma less_lengthI:
  "\<lbrakk> xs : list n A; p < n \<rbrakk> \<Longrightarrow> p < length xs"
  by simp

lemma listE_set [simp]:
  "xs : list n A \<Longrightarrow> set xs <= A"
apply (unfold list_def)
apply blast
done 

lemma list_0 [simp]:
  "list 0 A = {[]}"
apply (unfold list_def)
apply auto
done 

lemma in_list_Suc_iff: 
  "(xs : list (Suc n) A) = (? y:A. ? ys:list n A. xs = y#ys)"
apply (unfold list_def)
apply (case_tac "xs")
apply auto
done 

lemma Cons_in_list_Suc [iff]:
  "(x#xs : list (Suc n) A) = (x:A & xs : list n A)";
apply (simp add: in_list_Suc_iff)
done 

lemma list_not_empty:
  "? a. a:A \<Longrightarrow> ? xs. xs : list n A";
apply (induct "n")
 apply simp
apply (simp add: in_list_Suc_iff)
apply blast
done


lemma nth_in [rule_format, simp]:
  "!i n. length xs = n \<longrightarrow> set xs <= A \<longrightarrow> i < n \<longrightarrow> (xs!i) : A"
apply (induct "xs")
 apply simp
apply (simp add: nth_Cons split: nat.split)
done

lemma listE_nth_in:
  "\<lbrakk> xs : list n A; i < n \<rbrakk> \<Longrightarrow> (xs!i) : A"
  by auto


lemma listn_Cons_Suc [elim!]:
  "l#xs \<in> list n A \<Longrightarrow> (\<And>n'. n = Suc n' \<Longrightarrow> l \<in> A \<Longrightarrow> xs \<in> list n' A \<Longrightarrow> P) \<Longrightarrow> P"
  by (cases n) auto

lemma listn_appendE [elim!]:
  "a@b \<in> list n A \<Longrightarrow> (\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P) \<Longrightarrow> P" 
proof -
  have "\<And>n. a@b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n=n1+n2 \<and> a \<in> list n1 A \<and> b \<in> list n2 A"
    (is "\<And>n. ?list a n \<Longrightarrow> \<exists>n1 n2. ?P a n n1 n2")
  proof (induct a)
    fix n assume "?list [] n"
    hence "?P [] n 0 n" by simp
    thus "\<exists>n1 n2. ?P [] n n1 n2" by fast
  next
    fix n l ls
    assume "?list (l#ls) n"
    then obtain n' where n: "n = Suc n'" "l \<in> A" and "ls@b \<in> list n' A" by fastsimp
    assume "\<And>n. ls @ b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A"
    hence "\<exists>n1 n2. n' = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" .
    then obtain n1 n2 where "n' = n1 + n2" "ls \<in> list n1 A" "b \<in> list n2 A" by fast
    with n have "?P (l#ls) n (n1+1) n2" by simp
    thus "\<exists>n1 n2. ?P (l#ls) n n1 n2" by fastsimp
  qed
  moreover
  assume "a@b \<in> list n A" "\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P"
  ultimately
  show ?thesis by blast
qed


lemma listt_update_in_list [simp, intro!]:
  "\<lbrakk> xs : list n A; x:A \<rbrakk> \<Longrightarrow> xs[i := x] : list n A"
apply (unfold list_def)
apply simp
done 

lemma plus_list_Nil [simp]:
  "[] +[f] xs = []"
apply (unfold plussub_def map2_def)
apply simp
done 

lemma plus_list_Cons [simp]:
  "(x#xs) +[f] ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x +_f y)#(xs +[f] ys))"
  by (simp add: plussub_def map2_def split: list.split)

lemma length_plus_list [rule_format, simp]:
  "!ys. length(xs +[f] ys) = min(length xs) (length ys)"
apply (induct xs)
 apply simp
apply clarify
apply (simp (no_asm_simp) split: list.split)
done

lemma nth_plus_list [rule_format, simp]:
  "!xs ys i. length xs = n \<longrightarrow> length ys = n \<longrightarrow> i<n \<longrightarrow> 
  (xs +[f] ys)!i = (xs!i) +_f (ys!i)"
apply (induct n)
 apply simp
apply clarify
apply (case_tac xs)
 apply simp
apply (force simp add: nth_Cons split: list.split nat.split)
done


lemma (in semilat) plus_list_ub1 [rule_format]:
 "\<lbrakk> set xs <= A; set ys <= A; size xs = size ys \<rbrakk> 
  \<Longrightarrow> xs <=[r] xs +[f] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done

lemma (in semilat) plus_list_ub2:
 "\<lbrakk>set xs <= A; set ys <= A; size xs = size ys \<rbrakk>
  \<Longrightarrow> ys <=[r] xs +[f] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done

lemma (in semilat) plus_list_lub [rule_format]:
shows "!xs ys zs. set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> set zs <= A 
  \<longrightarrow> size xs = n & size ys = n \<longrightarrow> 
  xs <=[r] zs & ys <=[r] zs \<longrightarrow> xs +[f] ys <=[r] zs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done

lemma (in semilat) list_update_incr [rule_format]:
 "x:A \<Longrightarrow> set xs <= A \<longrightarrow> 
  (!i. i<size xs \<longrightarrow> xs <=[r] xs[i := x +_f xs!i])"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply (induct xs)
 apply simp
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: nth_Cons split: nat.split)
done

lemma acc_le_listI [intro!]:
  "\<lbrakk> order r; acc r \<rbrakk> \<Longrightarrow> acc(Listn.le r)"
apply (unfold acc_def)
apply (subgoal_tac
 "wf(UN n. {(ys,xs). size xs = n & size ys = n & xs <_(Listn.le r) ys})")
 apply (erule wf_subset)
 apply (blast intro: lesssub_list_impl_same_size)
apply (rule wf_UN)
 prefer 2
 apply clarify
 apply (rename_tac m n)
 apply (case_tac "m=n")
  apply simp
 apply (rule conjI)
  apply (fast intro!: equals0I dest: not_sym)
 apply (fast intro!: equals0I dest: not_sym)
apply clarify
apply (rename_tac n)
apply (induct_tac n)
 apply (simp add: lesssub_def cong: conj_cong)
apply (rename_tac k)
apply (simp add: wf_eq_minimal)
apply (simp (no_asm) add: length_Suc_conv cong: conj_cong)
apply clarify
apply (rename_tac M m)
apply (case_tac "? x xs. size xs = k & x#xs : M")
 prefer 2
 apply (erule thin_rl)
 apply (erule thin_rl)
 apply blast
apply (erule_tac x = "{a. ? xs. size xs = k & a#xs:M}" in allE)
apply (erule impE)
 apply blast
apply (thin_tac "? x xs. ?P x xs")
apply clarify
apply (rename_tac maxA xs)
apply (erule_tac x = "{ys. size ys = size xs & maxA#ys : M}" in allE)
apply (erule impE)
 apply blast
apply clarify
apply (thin_tac "m : M")
apply (thin_tac "maxA#xs : M")
apply (rule bexI)
 prefer 2
 apply assumption
apply clarify
apply simp
apply blast
done 

lemma closed_listI:
  "closed S f \<Longrightarrow> closed (list n S) (map2 f)"
apply (unfold closed_def)
apply (induct n)
 apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply simp
done


lemma Listn_sl_aux:
includes semilat shows "semilat (Listn.sl n (A,r,f))"
apply (unfold Listn.sl_def)
apply (simp (no_asm) only: semilat_Def split_conv)
apply (rule conjI)
 apply simp
apply (rule conjI)
 apply (simp only: closedI closed_listI)
apply (simp (no_asm) only: list_def)
apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub)
done

lemma Listn_sl: "\<And>L. semilat L \<Longrightarrow> semilat (Listn.sl n L)"
 by(simp add: Listn_sl_aux split_tupled_all)

lemma coalesce_in_err_list [rule_format]:
  "!xes. xes : list n (err A) \<longrightarrow> coalesce xes : err(list n A)"
apply (induct n)
 apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split)
apply force
done 

lemma lem: "\<And>x xs. x +_(op #) xs = x#xs"
  by (simp add: plussub_def)

lemma coalesce_eq_OK1_D [rule_format]:
  "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> 
  !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> 
  (!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> xs <=[r] zs))"
apply (induct n)
  apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK1)
done

lemma coalesce_eq_OK2_D [rule_format]:
  "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> 
  !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> 
  (!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> ys <=[r] zs))"
apply (induct n)
 apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK2)
done 

lemma lift2_le_ub:
  "\<lbrakk> semilat(err A, Err.le r, lift2 f); x:A; y:A; x +_f y = OK z; 
      u:A; x <=_r u; y <=_r u \<rbrakk> \<Longrightarrow> z <=_r u"
apply (unfold semilat_Def plussub_def err_def)
apply (simp add: lift2_def)
apply clarify
apply (rotate_tac -3)
apply (erule thin_rl)
apply (erule thin_rl)
apply force
done

lemma coalesce_eq_OK_ub_D [rule_format]:
  "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> 
  !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> 
  (!zs us. coalesce (xs +[f] ys) = OK zs & xs <=[r] us & ys <=[r] us 
           & us : list n A \<longrightarrow> zs <=[r] us))"
apply (induct n)
 apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def)
apply clarify
apply (rule conjI)
 apply (blast intro: lift2_le_ub)
apply blast
done 

lemma lift2_eq_ErrD:
  "\<lbrakk> x +_f y = Err; semilat(err A, Err.le r, lift2 f); x:A; y:A \<rbrakk> 
  \<Longrightarrow> ~(? u:A. x <=_r u & y <=_r u)"
  by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1])


lemma coalesce_eq_Err_D [rule_format]:
  "\<lbrakk> semilat(err A, Err.le r, lift2 f) \<rbrakk> 
  \<Longrightarrow> !xs. xs:list n A \<longrightarrow> (!ys. ys:list n A \<longrightarrow> 
      coalesce (xs +[f] ys) = Err \<longrightarrow> 
      ~(? zs:list n A. xs <=[r] zs & ys <=[r] zs))"
apply (induct n)
 apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
 apply (blast dest: lift2_eq_ErrD)
done 

lemma closed_err_lift2_conv:
  "closed (err A) (lift2 f) = (!x:A. !y:A. x +_f y : err A)"
apply (unfold closed_def)
apply (simp add: err_def)
done 

lemma closed_map2_list [rule_format]:
  "closed (err A) (lift2 f) \<Longrightarrow> 
  !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> 
  map2 f xs ys : list n (err A))"
apply (unfold map2_def)
apply (induct n)
 apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: plussub_def closed_err_lift2_conv)
done

lemma closed_lift2_sup:
  "closed (err A) (lift2 f) \<Longrightarrow> 
  closed (err (list n A)) (lift2 (sup f))"
  by (fastsimp  simp add: closed_def plussub_def sup_def lift2_def
                          coalesce_in_err_list closed_map2_list
                split: err.split)

lemma err_semilat_sup:
  "err_semilat (A,r,f) \<Longrightarrow> 
  err_semilat (list n A, Listn.le r, sup f)"
apply (unfold Err.sl_def)
apply (simp only: split_conv)
apply (simp (no_asm) only: semilat_Def plussub_def)
apply (simp (no_asm_simp) only: semilat.closedI closed_lift2_sup)
apply (rule conjI)
 apply (drule semilat.orderI)
 apply simp
apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def sup_def lift2_def)
apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split)
apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D)
done 

lemma err_semilat_upto_esl:
  "\<And>L. err_semilat L \<Longrightarrow> err_semilat(upto_esl m L)"
apply (unfold Listn.upto_esl_def)
apply (simp (no_asm_simp) only: split_tupled_all)
apply simp
apply (fastsimp intro!: err_semilat_UnionI err_semilat_sup
                dest: lesub_list_impl_same_size 
                simp add: plussub_def Listn.sup_def)
done

end

lemmas

  [| set xs <= A; x : A |] ==> set (xs[i := x]) <= A

lemma unfold_lesub_list:

  xs <=[r] ys == Listn.le r xs ys

lemma Nil_le_conv:

  ([] <=[r] ys) = (ys = [])

lemma Cons_notle_Nil:

  ¬ x # xs <=[r] []

lemma Cons_le_Cons:

  (x # xs <=[r] y # ys) = (x <=_r y & xs <=[r] ys)

lemma Cons_less_Conss:

  order r ==> (x # xs <[r] y # ys) = (x <_r y & xs <=[r] ys | x = y & xs <[r] ys)

lemma list_update_le_cong:

  [| i < length xs; xs <=[r] ys; x <=_r y |] ==> xs[i := x] <=[r] ys[i := y]

lemma le_listD:

  [| xs <=[r] ys; p < length xs |] ==> xs ! p <=_r ys ! p

lemma le_list_refl:

  ALL x. x <=_r x ==> xs <=[r] xs

lemma le_list_trans:

  [| order r; xs <=[r] ys; ys <=[r] zs |] ==> xs <=[r] zs

lemma le_list_antisym:

  [| order r; xs <=[r] ys; ys <=[r] xs |] ==> xs = ys

lemma order_listI:

  order r ==> order (Listn.le r)

lemma lesub_list_impl_same_size:

  xs <=[r] ys ==> length ys = length xs

lemma lesssub_list_impl_same_size:

  xs <[r] ys ==> length ys = length xs

lemma le_list_appendI:

  [| a <=[r] b; c <=[r] d |] ==> a @ c <=[r] b @ d

lemma le_listI:

  [| length a = length b; !!n. n < length a ==> a ! n <=_r b ! n |] ==> a <=[r] b

lemma listI:

  [| length xs = n; set xs <= A |] ==> xs : list n A

lemma listE_length:

  xs : list n A ==> length xs = n

lemma less_lengthI:

  [| xs : list n A; p < n |] ==> p < length xs

lemma listE_set:

  xs : list n A ==> set xs <= A

lemma list_0:

  list 0 A = {[]}

lemma in_list_Suc_iff:

  (xs : list (Suc n) A) = (EX y:A. EX ys:list n A. xs = y # ys)

lemma Cons_in_list_Suc:

  (x # xs : list (Suc n) A) = (x : A & xs : list n A)

lemma list_not_empty:

  EX a. a : A ==> EX xs. xs : list n A

lemma nth_in:

  [| length xs = n; set xs <= A; i < n |] ==> xs ! i : A

lemma listE_nth_in:

  [| xs : list n A; i < n |] ==> xs ! i : A

lemma listn_Cons_Suc:

  [| l # xs : list n A; !!n'. [| n = Suc n'; l : A; xs : list n' A |] ==> P |]
  ==> P

lemma listn_appendE:

  [| a @ b : list n A;
     !!n1 n2. [| n = n1 + n2; a : list n1 A; b : list n2 A |] ==> P |]
  ==> P

lemma listt_update_in_list:

  [| xs : list n A; x : A |] ==> xs[i := x] : list n A

lemma plus_list_Nil:

  [] +[f] xs = []

lemma plus_list_Cons:

  x # xs +[f] ys = (case ys of [] => [] | y # ys => (x +_f y) # xs +[f] ys)

lemma length_plus_list:

  length (xs +[f] ys) = min (length xs) (length ys)

lemma nth_plus_list:

  [| length xs = n; length ys = n; i < n |]
  ==> (xs +[f] ys) ! i = xs ! i +_f ys ! i

lemma plus_list_ub1:

  [| semilat (A, r, f); set xs <= A; set ys <= A; length xs = length ys |]
  ==> xs <=[r] xs +[f] ys

lemma plus_list_ub2:

  [| semilat (A, r, f); set xs <= A; set ys <= A; length xs = length ys |]
  ==> ys <=[r] xs +[f] ys

lemma

  semilat (A, r, f)
  ==> ALL xs ys zs.
         set xs <= A -->
         set ys <= A -->
         set zs <= A -->
         length xs = n & length ys = n -->
         xs <=[r] zs & ys <=[r] zs --> xs +[f] ys <=[r] zs

lemma list_update_incr:

  [| semilat (A, r, f); x : A |]
  ==> set xs <= A --> (ALL i. i < length xs --> xs <=[r] xs[i := x +_f xs ! i])

lemma acc_le_listI:

  [| order r; acc r |] ==> acc (Listn.le r)

lemma closed_listI:

  closed S f ==> closed (list n S) (map2 f)

lemma

  semilat (A, r, f) ==> semilat (Listn.sl n (A, r, f))

lemma Listn_sl:

  semilat L ==> semilat (Listn.sl n L)

lemma coalesce_in_err_list:

  xes : list n (err A) ==> coalesce xes : err (list n A)

lemma lem:

  x +_op # xs = x # xs

lemma coalesce_eq_OK1_D:

  [| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A;
     coalesce (xs +[f] ys) = OK zs |]
  ==> xs <=[r] zs

lemma coalesce_eq_OK2_D:

  [| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A;
     coalesce (xs +[f] ys) = OK zs |]
  ==> ys <=[r] zs

lemma lift2_le_ub:

  [| semilat (err A, Err.le r, lift2 f); x : A; y : A; x +_f y = OK z; u : A;
     x <=_r u; y <=_r u |]
  ==> z <=_r u

lemma coalesce_eq_OK_ub_D:

  [| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A;
     coalesce (xs +[f] ys) = OK zs & xs <=[r] us & ys <=[r] us & us : list n A |]
  ==> zs <=[r] us

lemma lift2_eq_ErrD:

  [| x +_f y = Err; semilat (err A, Err.le r, lift2 f); x : A; y : A |]
  ==> ¬ (EX u:A. x <=_r u & y <=_r u)

lemma coalesce_eq_Err_D:

  [| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A;
     coalesce (xs +[f] ys) = Err |]
  ==> ¬ (EX zs:list n A. xs <=[r] zs & ys <=[r] zs)

lemma closed_err_lift2_conv:

  closed (err A) (lift2 f) = (ALL x:A. ALL y:A. x +_f y : err A)

lemma closed_map2_list:

  [| closed (err A) (lift2 f); xs : list n A; ys : list n A |]
  ==> map2 f xs ys : list n (err A)

lemma closed_lift2_sup:

  closed (err A) (lift2 f) ==> closed (err (list n A)) (lift2 (Listn.sup f))

lemma err_semilat_sup:

  err_semilat (A, r, f) ==> err_semilat (list n A, Listn.le r, Listn.sup f)

lemma err_semilat_upto_esl:

  err_semilat L ==> err_semilat (upto_esl m L)