Up to index of Isabelle/HOL/jsr
theory JBasis = Main:(* Title: HOL/MicroJava/J/JBasis.thy
ID: $Id: JBasis.html,v 1.1 2002/11/28 14:17:20 kleing Exp $
Author: David von Oheimb
Copyright 1999 TU Muenchen
*)
header {*
\chapter{Program Structure and Declarations}\label{cha:j}
\isaheader{Some Auxiliary Definitions}
*}
theory JBasis = Main:
lemmas [simp] = Let_def
section "unique"
constdefs
unique :: "('a × 'b) list => bool"
"unique == distinct \<circ> map fst"
lemma fst_in_set_lemma [rule_format (no_asm)]:
"(x, y) : set xys --> x : fst ` set xys"
apply (induct_tac "xys")
apply auto
done
lemma unique_Nil [simp]: "unique []"
apply (unfold unique_def)
apply (simp (no_asm))
done
lemma unique_Cons [simp]: "unique ((x,y)#l) = (unique l & (!y. (x,y) ~: set l))"
apply (unfold unique_def)
apply (auto dest: fst_in_set_lemma)
done
lemma unique_append [rule_format (no_asm)]: "unique l' ==> unique l -->
(!(x,y):set l. !(x',y'):set l'. x' ~= x) --> unique (l @ l')"
apply (induct_tac "l")
apply (auto dest: fst_in_set_lemma)
done
lemma unique_map_inj [rule_format (no_asm)]:
"unique l --> inj f --> unique (map (%(k,x). (f k, g k x)) l)"
apply (induct_tac "l")
apply (auto dest: fst_in_set_lemma simp add: inj_eq)
done
section "More about Maps"
lemma map_of_SomeI [rule_format (no_asm)]:
"unique l --> (k, x) : set l --> map_of l k = Some x"
apply (induct_tac "l")
apply auto
done
lemma Ball_set_table_:
"(\<forall>(x,y)\<in>set l. P x y) --> (\<forall>x. \<forall>y. map_of l x = Some y --> P x y)"
apply(induct_tac "l")
apply(simp_all (no_asm))
apply safe
apply auto
done
lemmas Ball_set_table = Ball_set_table_ [THEN mp];
lemma table_of_remap_SomeD [rule_format (no_asm)]:
"map_of (map (\<lambda>((k,k'),x). (k,(k',x))) t) k = Some (k',x) -->
map_of t (k, k') = Some x"
apply (induct_tac "t")
apply auto
done
end
lemmas
Let s f == f s
lemma fst_in_set_lemma:
(x, y) : set xys ==> x : fst ` set xys
lemma unique_Nil:
unique []
lemma unique_Cons:
unique ((x, y) # l) = (unique l & (ALL y. (x, y) ~: set l))
lemma unique_append:
[| unique l'; unique l; ALL (x, y):set l. ALL (x', y'):set l'. x' ~= x |] ==> unique (l @ l')
lemma unique_map_inj:
[| unique l; inj f |] ==> unique (map (%(k, x). (f k, g k x)) l)
lemma map_of_SomeI:
[| unique l; (k, x) : set l |] ==> map_of l k = Some x
lemma Ball_set_table_:
Ball (set l) (split P) --> (ALL x y. map_of l x = Some y --> P x y)
lemmas Ball_set_table:
Ball (set l_1) (split P_1) ==> ALL x y. map_of l_1 x = Some y --> P_1 x y
lemma table_of_remap_SomeD:
map_of (map (%((k, k'), x). (k, k', x)) t) k = Some (k', x) ==> map_of t (k, k') = Some x