Up to index of Isabelle/HOL/jsr
theory JVMType = Product + Listn + JType:(* Title: HOL/MicroJava/BV/JVM.thy ID: $Id: JVMType.html,v 1.1 2002/11/28 14:17:20 kleing Exp $ Author: Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{The JVM Type System as Semilattice} *} theory JVMType = Product + Listn + JType: types locvars_type = "init_ty err list" opstack_type = "init_ty list" state_type = "opstack_type × locvars_type" state_bool = "state_type × bool" address_type = "state_bool set" state = "address_type err" -- "for Kildall" method_type = "address_type list" -- "for BVSpec" class_type = "sig \<Rightarrow> method_type" prog_type = "cname \<Rightarrow> class_type" constdefs address_types :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> address_type" "address_types G maxs maxr maxpc \<equiv> ((Union {list n (init_tys G maxpc) |n. n \<le> maxs}) × list maxr (err (init_tys G maxpc))) × {True,False}" states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state set" "states G maxs maxr maxpc \<equiv> err (Pow (address_types G maxs maxr maxpc))" sl :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state sl" "sl G maxs maxr maxpc \<equiv> SetSemilat.sl (address_types G maxs maxr maxpc)" constdefs le :: "state ord" "le \<equiv> Err.le (op \<subseteq>)" sup :: "state binop" "sup \<equiv> lift2 (\<lambda>x y. OK (x \<union> y))" lemma sl_def2: "sl G mxs mxr mpc \<equiv> (states G mxs mxr mpc, le, sup)" by (unfold sl_def SetSemilat.sl_def Err.sl_def Err.esl_def sup_def states_def le_def) simp lemma states_def2: "states G mxs mxr mpc \<equiv> fst (sl G mxs mxr mpc)" by (unfold sl_def2) simp lemma le_def2: "le \<equiv> fst (snd (sl G mxs mxr mpc))" by (unfold sl_def2) simp lemma sup_def2: "sup \<equiv> snd (snd (sl G mxs mxr mpc))" by (unfold sl_def2) simp lemma finite_list [intro!]: assumes A: "finite A" shows "finite (list n A)" proof (induct n) have "list 0 A = {[]}" by auto thus "finite (list 0 A)" by simp next fix n assume "finite (list n A)" moreover have "list (Suc n) A = split Cons ` (A × list n A)" by (unfold list_def) (auto simp add: length_Suc_conv) ultimately show "finite (list (Suc n) A)" using A by (auto intro: finite_imageI) qed lemma finite_Union [intro!]: "finite X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> finite x) \<Longrightarrow> finite (Union X)" by (simp add: Union_def) lemma finite_count [intro!,simp]: "finite {f x|x. x \<le> (n::nat)}" proof (induct n) show "finite {f x |x. x \<le> 0}" by simp next fix n assume "finite {f x |x. x \<le> n}" moreover have "{f x |x. x \<le> Suc n} = {f (Suc n)} \<union> {f x |x. x \<le> n}" proof show "{f (Suc n)} \<union> {f x |x. x \<le> n} \<subseteq> {f x |x. x \<le> Suc n}" by auto { fix y assume "y \<in> {f x |x. x \<le> Suc n}" then obtain x where y: "y = f x" and "x \<le> Suc n" by auto hence "x \<le> n \<or> x = Suc n" by auto with y have "y \<in> {f (Suc n)} \<union> {f x |x. x \<le> n}" by auto } thus "{f x |x. x \<le> Suc n} \<subseteq> {f (Suc n)} \<union> {f x |x. x \<le> n}" .. qed ultimately show "finite {f x |x. x \<le> Suc n}" by simp qed lemma finite_Union_list [intro!]: "finite A \<Longrightarrow> finite (Union {list n A|n. n \<le> m})" by auto lemma finite_productI [intro!]: "finite A \<Longrightarrow> finite B \<Longrightarrow> finite (A × B)" by (erule finite_induct) auto lemma finite_err [iff]: "finite (err A) = finite A" proof - have "err A = insert Err (OK`A)" by (unfold err_def) auto moreover have "inj_on OK A" by (unfold inj_on_def) auto ultimately show ?thesis by (auto intro: finite_imageI dest: finite_imageD) qed lemma semilat_JVM: "semilat (sl G mxs mxr mpc)" by (unfold sl_def) (rule semilat_set) lemma finite_address_types: "finite (address_types G mxs mxr mpc)" apply (insert finite_init_tys [of G mpc]) apply (unfold address_types_def) apply auto done lemma acc_JVM: "acc le (states G mxs mxr mpc)" apply (unfold states_def le_def) apply (rule acc_err) apply (rule acc_set) apply (rule finite_address_types) done end
lemma sl_def2:
JVMType.sl G mxs mxr mpc == (states G mxs mxr mpc, JVMType.le, JVMType.sup)
lemma states_def2:
states G mxs mxr mpc == fst (JVMType.sl G mxs mxr mpc)
lemma le_def2:
JVMType.le == fst (snd (JVMType.sl G mxs mxr mpc))
lemma sup_def2:
JVMType.sup == snd (snd (JVMType.sl G mxs mxr mpc))
lemma
finite A ==> finite (list n A)
lemma finite_Union:
[| finite X; !!x. x : X ==> finite x |] ==> finite (Union X)
lemma finite_count:
finite {f x |x. x <= n}
lemma finite_Union_list:
finite A ==> finite (Union {list n A |n. n <= m})
lemma finite_productI:
[| finite A; finite B |] ==> finite (A <*> B)
lemma finite_err:
finite (err A) = finite A
lemma semilat_JVM:
semilat (JVMType.sl G mxs mxr mpc)
lemma finite_address_types:
finite (address_types G mxs mxr mpc)
lemma acc_JVM:
acc JVMType.le (states G mxs mxr mpc)