Up to index of Isabelle/HOL/jsr
theory SetSemilat = Semilat + Err:(* Title: BV/SetSemilat.thy ID: $Id: SetSemilat.html,v 1.1 2002/11/28 14:17:20 kleing Exp $ Author: Gerwin Klein Copyright 2002 TUM *) header "Power Sets are Semilattices" theory SetSemilat = Semilat + Err: text {* In fact, arbitrary sets are semilattices, as is trivial to see: *} lemma "semilat (UNIV, op \<subseteq>, op \<union>)" by (unfold semilat_def supremum_def order_def plussub_def lesub_def) auto text {* Unfortunately, arbitrary sets do not satisfy the ascending chain condition @{term acc}, so we work with finite power sets. *} constdefs sl :: "'a set \<Rightarrow> 'a set err sl" "sl A \<equiv> Err.sl (esl (Pow A, op \<subseteq>, op \<union>))" text {* The semilattice property is still easy: *} lemma semilat_set: "semilat (sl A)" proof - have "semilat (Pow A, op \<subseteq>, op \<union>)" by (unfold semilat_def supremum_def closed_def order_def lesub_def plussub_def) auto thus ?thesis by (unfold sl_def) fast qed text {* The ascending chain condition holds when @{term A} is finite, because then the size of @{term A} is an upper bound to the length of ascending chains. *} lemma acc_set: assumes finite: "finite A" shows "acc (op \<subseteq>) (Pow A)" proof - let "?m x" = "card A - card (x::'a set)" let ?S = "{(y, x). x \<in> Pow A \<and> y \<in> Pow A \<and> x \<subset> y}" { fix a b assume sub: "b \<subseteq> A" "a \<subseteq> A" with finite have "finite a" "finite b" by (blast dest: finite_subset)+ moreover assume "b \<subset> a" ultimately have "card b < card a" by - (rule psubset_card_mono) moreover from finite sub have "card b \<le> card A" "card a \<le> card A" by (blast dest: card_mono)+ ultimately have "card A - card a < card A - card b" by arith } hence "{(y, x). x \<subseteq> A \<and> y \<subseteq> A \<and> x \<subset> y} \<subseteq> {(x, y). ?m x < ?m y}" by blast hence "?S \<subseteq> measure (\<lambda>x. ?m x)" by (simp add: measure_def inv_image_def) hence "wf ?S" by (rule wf_measure [THEN wf_subset]) thus ?thesis by (simp add: psubset_eq acc_def lesssub_def lesub_def) qed end
lemma
semilat (UNIV, op <=, op Un)
lemma semilat_set:
semilat (SetSemilat.sl A)
lemma
finite A ==> acc op <= (Pow A)