Theory Typing_Framework_err

Up to index of Isabelle/HOL/jsr

theory Typing_Framework_err = Typing_Framework + SemilatAlg:
(*  Title:      HOL/MicroJava/BV/Typing_Framework_err.thy
    ID:         $Id: Typing_Framework_err.html,v 1.1 2002/11/28 14:17:20 kleing Exp $
    Author:     Gerwin Klein
    Copyright   2000 TUM

*)

header {* \isaheader{Lifting the Typing Framework to err, app, and eff} *}

theory Typing_Framework_err = Typing_Framework + SemilatAlg:

constdefs
wt_err_step :: "'s ord \<Rightarrow> 's err step_type \<Rightarrow> 's err list \<Rightarrow> bool"
"wt_err_step r step ts \<equiv> wt_step (Err.le r) Err step ts"

wt_app_eff :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool"
"wt_app_eff r app step ts \<equiv>
  \<forall>p < size ts. app p (ts!p) \<and> (\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q)"

map_snd :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a × 'b) list \<Rightarrow> ('a × 'c) list"
"map_snd f \<equiv> map (\<lambda>(x,y). (x, f y))"

error :: "nat \<Rightarrow> (nat × 'a err) list"
"error n \<equiv> map (\<lambda>x. (x,Err)) [0..n(]"

err_step :: "nat \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's err step_type"
"err_step n app step p t \<equiv> 
  case t of 
    Err   \<Rightarrow> error n
  | OK t' \<Rightarrow> if app p t' then map_snd OK (step p t') else error n"

app_mono :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
"app_mono r app n A \<equiv>
 \<forall>s p t. s \<in> A \<and> t \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> app p t \<longrightarrow> app p s"


lemmas err_step_defs = err_step_def map_snd_def error_def


lemma bounded_err_stepD:
  "bounded (err_step n app step) n (err A) \<Longrightarrow> 
  p < n \<Longrightarrow>  a \<in> A \<Longrightarrow> app p a \<Longrightarrow> (q,b) \<in> set (step p a) \<Longrightarrow> 
  q < n"
  apply (simp add: bounded_def err_step_def)
  apply (erule allE, erule impE, assumption)
  apply (drule_tac x = "OK a" in bspec)
   apply simp
  apply (drule bspec)
   apply (simp add: map_snd_def)
   apply fast
  apply simp
  done


lemma in_map_sndD: "(a,b) \<in> set (map_snd f xs) \<Longrightarrow> \<exists>b'. (a,b') \<in> set xs"
  apply (induct xs)
  apply (auto simp add: map_snd_def)
  done


lemma bounded_err_stepI:
  "\<forall>p. p < n \<longrightarrow> (\<forall>s. app p s \<longrightarrow> (\<forall>(q,s') \<in> set (step p s). q < n))
  \<Longrightarrow> bounded (err_step n app step) n (err A)"
apply (unfold bounded_def)
apply clarify
apply (simp add: err_step_def split: err.splits)
apply (simp add: error_def)
 apply blast
apply (simp split: split_if_asm) 
 apply (blast dest: in_map_sndD)
apply (simp add: error_def)
apply blast
done


lemma bounded_lift:
  "bounded step n A \<Longrightarrow> bounded (err_step n app step) n (err A)"
  apply (unfold bounded_def err_step_def error_def)
  apply clarify
  apply (erule allE, erule impE, assumption)
  apply (case_tac s)
  apply (auto simp add: map_snd_def split: split_if_asm)
  done


lemma le_list_map_OK [simp]:
  "\<And>b. map OK a <=[Err.le r] map OK b = (a <=[r] b)"
  apply (induct a)
   apply simp
  apply simp
  apply (case_tac b)
   apply simp
  apply simp
  done


lemma map_snd_lessI:
  "x <=|r| y \<Longrightarrow> map_snd OK x <=|Err.le r| map_snd OK y"
  apply (induct x)
  apply (unfold lesubstep_type_def map_snd_def)
  apply auto
  done

lemma mono_lift:
  "order r \<Longrightarrow> app_mono r app n A \<Longrightarrow> bounded (err_step n app step) n (err A) \<Longrightarrow>
  \<forall>s p t. s \<in> A \<and> t \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> app p t \<longrightarrow> step p s <=|r| step p t \<Longrightarrow>
  mono (Err.le r) (err_step n app step) n (err A)"
apply (unfold app_mono_def SemilatAlg.mono_def err_step_def)
apply clarify
apply (case_tac s)
 apply simp 
apply simp
apply (case_tac t)
 apply simp
 apply clarify
 apply (simp add: lesubstep_type_def error_def)
 apply clarify
 apply (drule in_map_sndD)
 apply clarify
 apply (drule bounded_err_stepD, assumption+)
 apply (rule exI [of _ Err])
 apply simp
apply simp
apply (erule allE, erule allE, erule allE, erule impE)
 apply (rule conjI, assumption,
        rule conjI, assumption,
        rule conjI, assumption, assumption)
apply (rule conjI)
apply clarify
apply simp
apply (erule allE, erule allE, erule allE, erule impE)
 apply ((rule conjI, assumption)+, assumption)
apply (erule impE, assumption)
apply (rule map_snd_lessI, assumption)
apply clarify
apply (simp add: lesubstep_type_def error_def)
apply clarify
apply (drule in_map_sndD)
apply clarify
apply (drule bounded_err_stepD, assumption+)
apply (rule exI [of _ Err])
apply simp
done
 
lemma in_errorD:
  "(x,y) \<in> set (error n) \<Longrightarrow> y = Err"
  by (auto simp add: error_def)

lemma pres_type_lift:
  "\<forall>s\<in>A. \<forall>p. p < n \<longrightarrow> app p s \<longrightarrow> (\<forall>(q, s')\<in>set (step p s). s' \<in> A) 
  \<Longrightarrow> pres_type (err_step n app step) n (err A)"  
apply (unfold pres_type_def err_step_def)
apply clarify
apply (case_tac b)
 apply simp
apply (case_tac s)
 apply simp
 apply (drule in_errorD)
 apply simp
apply (simp add: map_snd_def split: split_if_asm)
 apply fast
apply (drule in_errorD)
apply simp
done



text {*
  There used to be a condition here
%FIXME (\cite{})
  that each instruction
  must have a successor. This is not needed any more, because the
  definition of @{term error} now trivially ensures that there is a
  successor for the critical case where @{term app} does not hold. 
*}
lemma wt_err_imp_wt_app_eff:
  assumes wt: "wt_err_step r (err_step (size ts) app step) ts"
  assumes b:  "bounded (err_step (size ts) app step) (size ts) (err A)"
  assumes A:  "set ts \<subseteq> err A"
  shows "wt_app_eff r app step (map ok_val ts)"
proof (unfold wt_app_eff_def, intro strip, rule conjI)
  fix p assume map_ok_val: "p < size (map ok_val ts)"
  hence lp: "p < size ts" by simp
  hence ts: "0 < size ts" by (cases p) auto
  hence err: "(0,Err) \<in> set (error (size ts))" by (simp add: error_def)

  from wt lp
  have [intro?]: "\<And>p. p < size ts \<Longrightarrow> ts ! p \<noteq> Err" 
    by (unfold wt_err_step_def wt_step_def) simp

  show app: "app p (map ok_val ts ! p)"
  proof (rule ccontr)
    from wt lp obtain s where
      OKp:  "ts ! p = OK s" and
      less: "\<forall>(q,t) \<in> set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
      by (unfold wt_err_step_def wt_step_def stable_def) 
         (auto iff: not_Err_eq)
    assume "¬ app p (map ok_val ts ! p)"
    with OKp lp have "¬ app p s" by simp
    with OKp have "err_step (size ts) app step p (ts!p) = error (size ts)" 
      by (simp add: err_step_def)    
    with err ts obtain q where 
      "(q,Err) \<in> set (err_step (size ts) app step p (ts!p))" and
      q: "q < size ts" by auto    
    with less have "ts!q = Err" by auto
    moreover from q have "ts!q \<noteq> Err" ..
    ultimately show False by blast
  qed
  
  show "\<forall>(q,t)\<in>set(step p (map ok_val ts ! p)). t <=_r map ok_val ts ! q" 
  proof clarify
    fix q t assume q: "(q,t) \<in> set (step p (map ok_val ts ! p))"

    from wt lp q
    obtain s where
      OKp:  "ts ! p = OK s" and
      less: "\<forall>(q,t) \<in> set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
      by (unfold wt_err_step_def wt_step_def stable_def) 
         (auto iff: not_Err_eq)

    from map_ok_val have "ts!p \<in> set ts" by auto
    with map_ok_val A OKp have "map ok_val ts ! p \<in> A" by auto

    with b lp app q have lq: "q < size ts" by - (rule bounded_err_stepD)
    hence "ts!q \<noteq> Err" ..
    then obtain s' where OKq: "ts ! q = OK s'" by (auto iff: not_Err_eq)

    from lp lq OKp OKq app less q
    show "t <=_r map ok_val ts ! q"
      by (auto simp add: err_step_def map_snd_def) 
  qed
qed


lemma wt_app_eff_imp_wt_err:
  assumes app_eff: "wt_app_eff r app step ts"
  assumes bounded: "bounded (err_step (size ts) app step) (size ts) (err A)"
  assumes A:       "set ts \<subseteq> A"
  shows "wt_err_step r (err_step (size ts) app step) (map OK ts)"
proof (unfold wt_err_step_def wt_step_def, intro strip, rule conjI)
  fix p assume "p < size (map OK ts)" 
  hence p: "p < size ts" by simp
  thus "map OK ts ! p \<noteq> Err" by simp
  { fix q t
    assume q: "(q,t) \<in> set (err_step (size ts) app step p (map OK ts ! p))" 
    with p app_eff obtain 
      "app p (ts ! p)" "\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q"
      by (unfold wt_app_eff_def) blast
    moreover
    from A p have "(map OK ts)!p \<in> err A" by simp
    with q p bounded have "q < size ts" by - (rule boundedD)
    hence "map OK ts ! q = OK (ts!q)" by simp
    moreover
    have "p < size ts" by (rule p)
    moreover note q
    ultimately     
    have "t <=_(Err.le r) map OK ts ! q" 
      by (auto simp add: err_step_def map_snd_def)
  }
  thus "stable (Err.le r) (err_step (size ts) app step) (map OK ts) p"
    by (unfold stable_def) blast
qed

end


lemmas err_step_defs:

  err_step n app step p t ==
  case t of Err => error n
  | OK t' => if app p t' then map_snd OK (step p t') else error n
  map_snd f == map (%(x, y). (x, f y))
  error n == map (%x. (x, Err)) [0..n(]

lemma bounded_err_stepD:

  [| bounded (err_step n app step) n (err A); p < n; a : A; app p a;
     (q, b) : set (step p a) |]
  ==> q < n

lemma in_map_sndD:

  (a, b) : set (map_snd f xs) ==> EX b'. (a, b') : set xs

lemma bounded_err_stepI:

  ALL p. p < n --> (ALL s. app p s --> (ALL (q, s'):set (step p s). q < n))
  ==> bounded (err_step n app step) n (err A)

lemma bounded_lift:

  bounded step n A ==> bounded (err_step n app step) n (err A)

lemma le_list_map_OK:

  (map OK a <=[Err.le r] map OK b) = (a <=[r] b)

lemma map_snd_lessI:

  x <=|r| y ==> map_snd OK x <=|Err.le r| map_snd OK y

lemma mono_lift:

  [| order r; app_mono r app n A; bounded (err_step n app step) n (err A);
     ALL s p t.
        s : A & t : A & p < n & s <=_r t -->
        app p t --> step p s <=|r| step p t |]
  ==> SemilatAlg.mono (Err.le r) (err_step n app step) n (err A)

lemma in_errorD:

  (x, y) : set (error n) ==> y = Err

lemma pres_type_lift:

  ALL s:A. ALL p. p < n --> app p s --> (ALL (q, s'):set (step p s). s' : A)
  ==> pres_type (err_step n app step) n (err A)

lemma

  [| wt_err_step r (err_step (length ts) app step) ts;
     bounded (err_step (length ts) app step) (length ts) (err A);
     set ts <= err A |]
  ==> wt_app_eff r app step (map ok_val ts)

lemma

  [| wt_app_eff r app step ts;
     bounded (err_step (length ts) app step) (length ts) (err A); set ts <= A |]
  ==> wt_err_step r (err_step (length ts) app step) (map OK ts)