Up to index of Isabelle/HOL/jsr
theory WellForm = TypeRel + SystemClasses:(* Title: HOL/MicroJava/J/WellForm.thy ID: $Id: WellForm.html,v 1.1 2002/11/28 14:17:20 kleing Exp $ Author: David von Oheimb Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Well-formedness of Java programs} *} theory WellForm = TypeRel + SystemClasses: text {* for static checks on expressions and statements, see WellType. \begin{description} \item[improvements over Java Specification 1.0 (cf. 8.4.6.3, 8.4.6.4, 9.4.1):]\ \\ \begin{itemize} \item a method implementing or overwriting another method may have a result type that widens to the result type of the other method (instead of identical type) \end{itemize} \item[simplifications:]\ \\ \begin{itemize} \item for uniformity, Object is assumed to be declared like any other class \end{itemize} \end{description} *} types 'c wf_mb = "'c prog => cname => 'c mdecl => bool" constdefs wf_fdecl :: "'c prog => fdecl => bool" "wf_fdecl G == \<lambda>(fn,ft). is_type G ft \<and> ¬is_RA ft" wf_mhead :: "'c prog => sig => ty => bool" "wf_mhead G == \<lambda>(mn,pTs) rT. (\<forall>T\<in>set pTs. is_type G T \<and> ¬is_RA T) \<and> is_type G rT \<and> ¬is_RA rT" wf_mdecl :: "'c wf_mb => 'c wf_mb" "wf_mdecl wf_mb G C == \<lambda>(sig,rT,mb). wf_mhead G sig rT \<and> wf_mb G C (sig,rT,mb)" wf_cdecl :: "'c wf_mb => 'c prog => 'c cdecl => bool" "wf_cdecl wf_mb G == \<lambda>(C,(D,fs,ms)). (\<forall>f\<in>set fs. wf_fdecl G f) \<and> unique fs \<and> (\<forall>m\<in>set ms. wf_mdecl wf_mb G C m) \<and> unique ms \<and> (C \<noteq> Object \<longrightarrow> is_class G D \<and> ¬G\<turnstile>D\<preceq>C C \<and> (\<forall>(sig,rT,b)\<in>set ms. \<forall>D' rT' b'. method(G,D) sig = Some(D',rT',b') --> G\<turnstile>rT\<preceq>rT'))" wf_syscls :: "'c prog => bool" "wf_syscls G == set SystemClasses \<subseteq> fst ` (set G)" wf_prog :: "'c wf_mb => 'c prog => bool" "wf_prog wf_mb G == let cs = set G in wf_syscls G \<and> (\<forall>c\<in>cs. wf_cdecl wf_mb G c) \<and> unique G" lemma class_wf: "[|class G C = Some c; wf_prog wf_mb G|] ==> wf_cdecl wf_mb G (C,c)" apply (unfold wf_prog_def class_def) apply (simp) apply (fast dest: map_of_SomeD) done lemma class_Object [simp]: "wf_prog wf_mb G ==> \<exists>X fs ms. class G Object = Some (X,fs,ms)" apply (unfold wf_prog_def wf_syscls_def class_def SystemClasses_def) apply (auto simp: map_of_SomeI) done lemma is_class_Object [simp]: "wf_prog wf_mb G ==> is_class G Object" apply (unfold is_class_def) apply (simp (no_asm_simp)) done lemma is_class_xcpt [simp]: "wf_prog wf_mb G \<Longrightarrow> is_class G (Xcpt x)" apply (simp add: wf_prog_def wf_syscls_def) apply (simp add: is_class_def class_def SystemClasses_def) apply clarify apply (cases x) apply (auto intro!: map_of_SomeI) done lemma subcls1_wfD: "[|G\<turnstile>C\<prec>C1D; wf_prog wf_mb G|] ==> D \<noteq> C \<and> ¬(D,C)\<in>(subcls1 G)^+" apply( frule r_into_trancl) apply( drule subcls1D) apply(clarify) apply( drule (1) class_wf) apply( unfold wf_cdecl_def) apply(force simp add: reflcl_trancl [THEN sym] simp del: reflcl_trancl) done lemma wf_cdecl_supD: "!!r. \<lbrakk>wf_cdecl wf_mb G (C,D,r); C \<noteq> Object\<rbrakk> \<Longrightarrow> is_class G D" apply (unfold wf_cdecl_def) apply (auto split add: option.split_asm) done lemma subcls_asym: "[|wf_prog wf_mb G; (C,D)\<in>(subcls1 G)^+|] ==> ¬(D,C)\<in>(subcls1 G)^+" apply(erule tranclE) apply(fast dest!: subcls1_wfD ) apply(fast dest!: subcls1_wfD intro: trancl_trans) done lemma subcls_irrefl: "[|wf_prog wf_mb G; (C,D)\<in>(subcls1 G)^+|] ==> C \<noteq> D" apply (erule trancl_trans_induct) apply (auto dest: subcls1_wfD subcls_asym) done lemma acyclic_subcls1: "wf_prog wf_mb G ==> acyclic (subcls1 G)" apply (unfold acyclic_def) apply (fast dest: subcls_irrefl) done lemma wf_subcls1: "wf_prog wf_mb G ==> wf ((subcls1 G)^-1)" apply (rule finite_acyclic_wf) apply ( subst finite_converse) apply ( rule finite_subcls1) apply (subst acyclic_converse) apply (erule acyclic_subcls1) done lemma subcls_induct: "[|wf_prog wf_mb G; !!C. \<forall>D. (C,D)\<in>(subcls1 G)^+ --> P D ==> P C|] ==> P C" (is "?A \<Longrightarrow> PROP ?P \<Longrightarrow> _") proof - assume p: "PROP ?P" assume ?A thus ?thesis apply - apply(drule wf_subcls1) apply(drule wf_trancl) apply(simp only: trancl_converse) apply(erule_tac a = C in wf_induct) apply(rule p) apply(auto) done qed lemma subcls1_induct: "[|is_class G C; wf_prog wf_mb G; P Object; !!C D fs ms. [|C \<noteq> Object; is_class G C; class G C = Some (D,fs,ms) \<and> wf_cdecl wf_mb G (C,D,fs,ms) \<and> G\<turnstile>C\<prec>C1D \<and> is_class G D \<and> P D|] ==> P C |] ==> P C" (is "?A \<Longrightarrow> ?B \<Longrightarrow> ?C \<Longrightarrow> PROP ?P \<Longrightarrow> _") proof - assume p: "PROP ?P" assume ?A ?B ?C thus ?thesis apply - apply(unfold is_class_def) apply( rule impE) prefer 2 apply( assumption) prefer 2 apply( assumption) apply( erule thin_rl) apply( rule subcls_induct) apply( assumption) apply( rule impI) apply( case_tac "C = Object") apply( fast) apply safe apply( frule (1) class_wf) apply( frule (1) wf_cdecl_supD) apply( subgoal_tac "G\<turnstile>C\<prec>C1a") apply( erule_tac [2] subcls1I) apply( rule p) apply (unfold is_class_def) apply auto done qed lemmas method_rec = wf_subcls1 [THEN [2] method_rec_lemma]; lemmas fields_rec = wf_subcls1 [THEN [2] fields_rec_lemma]; lemma method_Object [simp]: "method (G, Object) sig = Some (D, mh, code) \<Longrightarrow> wf_prog wf_mb G \<Longrightarrow> D = Object" apply (frule class_Object, clarify) apply (drule method_rec, assumption) apply (auto dest: map_of_SomeD) done lemma subcls_C_Object: "[|is_class G C; wf_prog wf_mb G|] ==> G\<turnstile>C\<preceq>C Object" apply(erule subcls1_induct) apply( assumption) apply( fast) apply(auto dest!: wf_cdecl_supD) apply(erule (1) converse_rtrancl_into_rtrancl) done lemma is_type_rTI: "wf_mhead G sig rT ==> is_type G rT" apply (unfold wf_mhead_def) apply auto done lemma no_RA_rT: "wf_mhead G sig rT ==> ¬is_RA rT" apply (unfold wf_mhead_def) apply auto done lemma widen_fields_defpl': "[|is_class G C; wf_prog wf_mb G|] ==> \<forall>((fn,fd),fT)\<in>set (fields (G,C)). G\<turnstile>C\<preceq>C fd" apply( erule subcls1_induct) apply( assumption) apply( frule class_Object) apply( clarify) apply( frule fields_rec, assumption) apply( fastsimp) apply( tactic "safe_tac HOL_cs") apply( subst fields_rec) apply( assumption) apply( assumption) apply( simp (no_asm) split del: split_if) apply( rule ballI) apply( simp (no_asm_simp) only: split_tupled_all) apply( simp (no_asm)) apply( erule UnE) apply( force) apply( erule r_into_rtrancl [THEN rtrancl_trans]) apply auto done lemma widen_fields_defpl: "[|((fn,fd),fT) \<in> set (fields (G,C)); wf_prog wf_mb G; is_class G C|] ==> G\<turnstile>C\<preceq>C fd" apply( drule (1) widen_fields_defpl') apply (fast) done lemma unique_fields: "[|is_class G C; wf_prog wf_mb G|] ==> unique (fields (G,C))" apply( erule subcls1_induct) apply( assumption) apply( frule class_Object) apply( clarify) apply( frule fields_rec, assumption) apply( drule class_wf, assumption) apply( simp add: wf_cdecl_def) apply( rule unique_map_inj) apply( simp) apply( rule inj_onI) apply( simp) apply( safe dest!: wf_cdecl_supD) apply( drule subcls1_wfD) apply( assumption) apply( subst fields_rec) apply auto apply( rotate_tac -1) apply( frule class_wf) apply auto apply( simp add: wf_cdecl_def) apply( erule unique_append) apply( rule unique_map_inj) apply( clarsimp) apply (rule inj_onI) apply( simp) apply(auto dest!: widen_fields_defpl) done lemma fields_mono_lemma [rule_format (no_asm)]: "[|wf_prog wf_mb G; (C',C)\<in>(subcls1 G)^*|] ==> x \<in> set (fields (G,C)) --> x \<in> set (fields (G,C'))" apply(erule converse_rtrancl_induct) apply( safe dest!: subcls1D) apply(subst fields_rec) apply( auto) done lemma fields_mono: "\<lbrakk>map_of (fields (G,C)) fn = Some f; G\<turnstile>D\<preceq>C C; is_class G D; wf_prog wf_mb G\<rbrakk> \<Longrightarrow> map_of (fields (G,D)) fn = Some f" apply (rule map_of_SomeI) apply (erule (1) unique_fields) apply (erule (1) fields_mono_lemma) apply (erule map_of_SomeD) done lemma widen_cfs_fields: "[|field (G,C) fn = Some (fd, fT); G\<turnstile>D\<preceq>C C; wf_prog wf_mb G|]==> map_of (fields (G,D)) (fn, fd) = Some fT" apply (drule field_fields) apply (drule rtranclD) apply safe apply (frule subcls_is_class) apply (drule trancl_into_rtrancl) apply (fast dest: fields_mono) done lemma method_wf_mdecl [rule_format (no_asm)]: "wf_prog wf_mb G ==> is_class G C \<Longrightarrow> method (G,C) sig = Some (md,mh,m) --> G\<turnstile>C\<preceq>C md \<and> wf_mdecl wf_mb G md (sig,(mh,m))" apply( erule subcls1_induct) apply( assumption) apply( clarify) apply( frule class_Object) apply( clarify) apply( frule method_rec, assumption) apply( drule class_wf, assumption) apply( simp add: wf_cdecl_def) apply( drule map_of_SomeD) apply( subgoal_tac "md = Object") apply( fastsimp) apply( fastsimp) apply( clarify) apply( frule_tac C = C in method_rec) apply( assumption) apply( rotate_tac -1) apply( simp) apply( drule override_SomeD) apply( erule disjE) apply( erule_tac V = "?P --> ?Q" in thin_rl) apply (frule map_of_SomeD) apply (clarsimp simp add: wf_cdecl_def) apply( clarify) apply( rule rtrancl_trans) prefer 2 apply( assumption) apply( rule r_into_rtrancl) apply( fast intro: subcls1I) done lemma subcls_widen_methd [rule_format (no_asm)]: "[|G\<turnstile>T\<preceq>C T'; wf_prog wf_mb G|] ==> \<forall>D rT b. method (G,T') sig = Some (D,rT ,b) --> (\<exists>D' rT' b'. method (G,T) sig = Some (D',rT',b') \<and> G\<turnstile>rT'\<preceq>rT)" apply( drule rtranclD) apply( erule disjE) apply( fast) apply( erule conjE) apply( erule trancl_trans_induct) prefer 2 apply( clarify) apply( drule spec, drule spec, drule spec, erule (1) impE) apply( fast elim: widen_trans) apply( clarify) apply( drule subcls1D) apply( clarify) apply( subst method_rec) apply( assumption) apply( unfold override_def) apply( simp (no_asm_simp) del: split_paired_Ex) apply( case_tac "\<exists>z. map_of(map (\<lambda>(s,m). (s, ?C, m)) ms) sig = Some z") apply( erule exE) apply( rotate_tac -1, frule ssubst, erule_tac [2] asm_rl) prefer 2 apply( rotate_tac -1, frule ssubst, erule_tac [2] asm_rl) apply( tactic "asm_full_simp_tac (HOL_ss addsimps [not_None_eq RS sym]) 1") apply( simp_all (no_asm_simp) del: split_paired_Ex) apply( drule (1) class_wf) apply( simp (no_asm_simp) only: split_tupled_all) apply( unfold wf_cdecl_def) apply( drule map_of_SomeD) apply auto done lemma subtype_widen_methd: "[| G\<turnstile> C\<preceq>C D; wf_prog wf_mb G; method (G,D) sig = Some (md, rT, b) |] ==> \<exists>mD' rT' b'. method (G,C) sig= Some(mD',rT',b') \<and> G\<turnstile>rT'\<preceq>rT" apply(auto dest: subcls_widen_methd method_wf_mdecl simp add: wf_mdecl_def wf_mhead_def split_def) done lemma method_in_md [rule_format (no_asm)]: "wf_prog wf_mb G ==> is_class G C \<Longrightarrow> \<forall>D. method (G,C) sig = Some(D,mh,code) --> is_class G D \<and> method (G,D) sig = Some(D,mh,code)" apply (erule (1) subcls1_induct) apply clarify apply (frule method_Object, assumption) apply hypsubst apply simp apply (erule conjE) apply (subst method_rec) apply (assumption) apply (assumption) apply (clarify) apply (erule_tac "x" = "Da" in allE) apply (clarsimp) apply (simp add: map_of_map) apply (clarify) apply (subst method_rec) apply (assumption) apply (assumption) apply (simp add: override_def map_of_map split add: option.split) done lemma widen_methd: "[| method (G,C) sig = Some (md,rT,b); wf_prog wf_mb G; G\<turnstile>T''\<preceq>C C|] ==> \<exists>md' rT' b'. method (G,T'') sig = Some (md',rT',b') \<and> G\<turnstile>rT'\<preceq>rT" apply( drule subcls_widen_methd) apply auto done lemma Call_lemma: "[|method (G,C) sig = Some (md,rT,b); G\<turnstile>T''\<preceq>C C; wf_prog wf_mb G; class G C = Some y|] ==> \<exists>T' rT' b. method (G,T'') sig = Some (T',rT',b) \<and> G\<turnstile>rT'\<preceq>rT \<and> G\<turnstile>T''\<preceq>C T' \<and> wf_mhead G sig rT' \<and> wf_mb G T' (sig,rT',b)" apply( drule (2) widen_methd) apply( clarify) apply( frule subcls_is_class2) apply (unfold is_class_def) apply (simp (no_asm_simp)) apply( drule method_wf_mdecl) apply( unfold wf_mdecl_def) apply( unfold is_class_def) apply auto done lemma fields_is_type_lemma [rule_format (no_asm)]: "[|is_class G C; wf_prog wf_mb G|] ==> \<forall>f\<in>set (fields (G,C)). is_type G (snd f) \<and> ¬is_RA (snd f)" apply( erule (1) subcls1_induct) apply( frule class_Object) apply( clarify) apply( frule fields_rec, assumption) apply( drule class_wf, assumption) apply( simp add: wf_cdecl_def wf_fdecl_def) apply( fastsimp) apply( subst fields_rec) apply( fast) apply( assumption) apply( clarsimp) apply( safe) prefer 3 apply( force) apply( drule (1) class_wf) apply( unfold wf_cdecl_def) apply( clarsimp) apply( drule (1) bspec) apply( unfold wf_fdecl_def) apply auto done lemma fields_is_type: "[|map_of (fields (G,C)) fn = Some f; wf_prog wf_mb G; is_class G C|] ==> is_type G f" apply(drule map_of_SomeD) apply(drule (2) fields_is_type_lemma) apply(auto) done lemma fields_no_RA: "[|map_of (fields (G,C)) fn = Some f; wf_prog wf_mb G; is_class G C|] ==> ¬is_RA f" apply(drule map_of_SomeD) apply(drule (2) fields_is_type_lemma) apply(auto) done lemma methd: "[| wf_prog wf_mb G; (C,S,fs,mdecls) \<in> set G; (sig,rT,code) \<in> set mdecls |] ==> method (G,C) sig = Some(C,rT,code) \<and> is_class G C" proof - assume wf: "wf_prog wf_mb G" and C: "(C,S,fs,mdecls) \<in> set G" and m: "(sig,rT,code) \<in> set mdecls" moreover from wf C have "class G C = Some (S,fs,mdecls)" by (auto simp add: wf_prog_def class_def is_class_def intro: map_of_SomeI) moreover from wf C have "unique mdecls" by (unfold wf_prog_def wf_cdecl_def) auto hence "unique (map (\<lambda>(s,m). (s,C,m)) mdecls)" by (induct mdecls, auto) with m have "map_of (map (\<lambda>(s,m). (s,C,m)) mdecls) sig = Some (C,rT,code)" by (force intro: map_of_SomeI) ultimately show ?thesis by (auto simp add: is_class_def dest: method_rec) qed lemma wf_mb'E: "\<lbrakk> wf_prog wf_mb G; \<And>C S fs ms m.\<lbrakk>(C,S,fs,ms) \<in> set G; m \<in> set ms\<rbrakk> \<Longrightarrow> wf_mb' G C m \<rbrakk> \<Longrightarrow> wf_prog wf_mb' G" apply (simp add: wf_prog_def) apply auto apply (simp add: wf_cdecl_def wf_mdecl_def) apply safe apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply clarify apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply (drule bspec, assumption) apply simp apply clarify apply (drule bspec, assumption)+ apply simp done end
lemma class_wf:
[| class G C = Some c; wf_prog wf_mb G |] ==> wf_cdecl wf_mb G (C, c)
lemma class_Object:
wf_prog wf_mb G ==> EX X fs ms. class G Object = Some (X, fs, ms)
lemma is_class_Object:
wf_prog wf_mb G ==> is_class G Object
lemma is_class_xcpt:
wf_prog wf_mb G ==> is_class G (Xcpt x)
lemma subcls1_wfD:
[| G |- C <=C1 D; wf_prog wf_mb G |] ==> D ~= C & (D, C) ~: (subcls1 G)^+
lemma wf_cdecl_supD:
[| wf_cdecl wf_mb G (C, D, r); C ~= Object |] ==> is_class G D
lemma subcls_asym:
[| wf_prog wf_mb G; (C, D) : (subcls1 G)^+ |] ==> (D, C) ~: (subcls1 G)^+
lemma subcls_irrefl:
[| wf_prog wf_mb G; (C, D) : (subcls1 G)^+ |] ==> C ~= D
lemma acyclic_subcls1:
wf_prog wf_mb G ==> acyclic (subcls1 G)
lemma wf_subcls1:
wf_prog wf_mb G ==> wf ((subcls1 G)^-1)
lemma subcls_induct:
[| wf_prog wf_mb G; !!C. ALL D. (C, D) : (subcls1 G)^+ --> P D ==> P C |] ==> P C
lemma subcls1_induct:
[| is_class G C; wf_prog wf_mb G; P Object; !!C D fs ms. [| C ~= Object; is_class G C; class G C = Some (D, fs, ms) & wf_cdecl wf_mb G (C, D, fs, ms) & G |- C <=C1 D & is_class G D & P D |] ==> P C |] ==> P C
lemmas method_rec:
[| class G C = Some (D, fs, ms); wf_prog wf_mb_1 G |] ==> method (G, C) = (if C = Object then empty else method (G, D)) ++ map_of (map (%(s, m). (s, C, m)) ms)
lemmas fields_rec:
[| class G C = Some (D, fs, ms); wf_prog wf_mb_1 G |] ==> fields (G, C) = map (split (%fn. Pair (fn, C))) fs @ (if C = Object then [] else fields (G, D))
lemma method_Object:
[| method (G, Object) sig = Some (D, mh, code); wf_prog wf_mb G |] ==> D = Object
lemma subcls_C_Object:
[| is_class G C; wf_prog wf_mb G |] ==> G |- C <=C Object
lemma is_type_rTI:
wf_mhead G sig rT ==> is_type G rT
lemma no_RA_rT:
wf_mhead G sig rT ==> ¬ is_RA rT
lemma widen_fields_defpl':
[| is_class G C; wf_prog wf_mb G |] ==> ALL ((fn, fd), fT):set (fields (G, C)). G |- C <=C fd
lemma widen_fields_defpl:
[| ((fn, fd), fT) : set (fields (G, C)); wf_prog wf_mb G; is_class G C |] ==> G |- C <=C fd
lemma unique_fields:
[| is_class G C; wf_prog wf_mb G |] ==> unique (fields (G, C))
lemma fields_mono_lemma:
[| wf_prog wf_mb G; G |- C' <=C C; x : set (fields (G, C)) |] ==> x : set (fields (G, C'))
lemma fields_mono:
[| map_of (fields (G, C)) fn = Some f; G |- D <=C C; is_class G D; wf_prog wf_mb G |] ==> map_of (fields (G, D)) fn = Some f
lemma widen_cfs_fields:
[| field (G, C) fn = Some (fd, fT); G |- D <=C C; wf_prog wf_mb G |] ==> map_of (fields (G, D)) (fn, fd) = Some fT
lemma method_wf_mdecl:
[| wf_prog wf_mb G; is_class G C; method (G, C) sig = Some (md, mh, m) |] ==> G |- C <=C md & wf_mdecl wf_mb G md (sig, mh, m)
lemma subcls_widen_methd:
[| G |- T <=C T'; wf_prog wf_mb G; method (G, T') sig = Some (D, rT, b) |] ==> EX D' rT' b'. method (G, T) sig = Some (D', rT', b') & G |- rT' <= rT
lemma subtype_widen_methd:
[| G |- C <=C D; wf_prog wf_mb G; method (G, D) sig = Some (md, rT, b) |] ==> EX mD' rT' b'. method (G, C) sig = Some (mD', rT', b') & G |- rT' <= rT
lemma method_in_md:
[| wf_prog wf_mb G; is_class G C; method (G, C) sig = Some (D, mh, code) |] ==> is_class G D & method (G, D) sig = Some (D, mh, code)
lemma widen_methd:
[| method (G, C) sig = Some (md, rT, b); wf_prog wf_mb G; G |- T'' <=C C |] ==> EX md' rT' b'. method (G, T'') sig = Some (md', rT', b') & G |- rT' <= rT
lemma Call_lemma:
[| method (G, C) sig = Some (md, rT, b); G |- T'' <=C C; wf_prog wf_mb G; class G C = Some y |] ==> EX T' rT' b. method (G, T'') sig = Some (T', rT', b) & G |- rT' <= rT & G |- T'' <=C T' & wf_mhead G sig rT' & wf_mb G T' (sig, rT', b)
lemma fields_is_type_lemma:
[| is_class G C; wf_prog wf_mb G; f : set (fields (G, C)) |] ==> is_type G (snd f) & ¬ is_RA (snd f)
lemma fields_is_type:
[| map_of (fields (G, C)) fn = Some f; wf_prog wf_mb G; is_class G C |] ==> is_type G f
lemma fields_no_RA:
[| map_of (fields (G, C)) fn = Some f; wf_prog wf_mb G; is_class G C |] ==> ¬ is_RA f
lemma methd:
[| wf_prog wf_mb G; (C, S, fs, mdecls) : set G; (sig, rT, code) : set mdecls |] ==> method (G, C) sig = Some (C, rT, code) & is_class G C
lemma wf_mb'E:
[| wf_prog wf_mb G; !!C S fs ms m. [| (C, S, fs, ms) : set G; m : set ms |] ==> wf_mb' G C m |] ==> wf_prog wf_mb' G