Up to index of Isabelle/HOL/objinit
theory BVExample = JVMListExample + BVSpecTypeSafe:(* Title: HOL/MicroJava/BV/BVExample.thy ID: $Id: BVExample.html,v 1.1 2002/11/28 14:12:09 kleing Exp $ Author: Gerwin Klein *) header {* \isaheader{Example Welltypings}\label{sec:BVExample} *} theory BVExample = JVMListExample + BVSpecTypeSafe: text {* This theory shows type correctness of the example program in section \ref{sec:JVMListExample} (p. \pageref{sec:JVMListExample}) by explicitly providing a welltyping. It also shows that the start state of the program conforms to the welltyping; hence type safe execution is guaranteed. *} section "Setup" text {* Since the types @{typ cnam}, @{text vnam}, and @{text mname} are anonymous, we describe distinctness of names in the example by axioms: *} axioms distinct_classes [simp]: "list_nam \<noteq> test_nam" distinct_fields [simp]: "val_nam \<noteq> next_nam" distinct_meth_list [simp]: "append_name \<noteq> init" distinct_meth_test [simp]: "makelist_name \<noteq> init" declare distinct_classes [symmetric, simp] distinct_fields [symmetric, simp] distinct_meth_list [symmetric, simp] distinct_meth_test [symmetric, simp] text {* Abbreviations for theorem sets we will have to use often in the proofs below: *} lemmas name_defs = list_name_def test_name_def val_name_def next_name_def lemmas system_defs = JVMSystemClasses_def SystemClassC_defs lemmas class_defs = list_class_def test_class_def text {* These auxiliary proofs are for efficiency: class lookup, subclass relation, method and field lookup are computed only once: *} lemma class_Object [simp]: "class E Object = Some (arbitrary, [],[Object_ctor])" by (simp add: class_def system_defs E_def) lemma class_NullPointer [simp]: "class E (Xcpt NullPointer) = Some (Object, [], [Default_ctor])" by (simp add: class_def system_defs E_def) lemma class_OutOfMemory [simp]: "class E (Xcpt OutOfMemory) = Some (Object, [], [Default_ctor])" by (simp add: class_def system_defs E_def) lemma class_ClassCast [simp]: "class E (Xcpt ClassCast) = Some (Object, [], [Default_ctor])" by (simp add: class_def system_defs E_def) lemma class_list [simp]: "class E list_name = Some list_class" by (simp add: class_def system_defs E_def name_defs) lemma class_test [simp]: "class E test_name = Some test_class" by (simp add: class_def system_defs E_def name_defs) lemma E_classes [simp]: "{C. is_class E C} = {list_name, test_name, Xcpt NullPointer, Xcpt ClassCast, Xcpt OutOfMemory, Object}" by (auto simp add: is_class_def class_def system_defs E_def name_defs class_defs) text {* The subclass releation spelled out: *} lemma subcls1: "subcls1 E = {(list_name,Object), (test_name,Object), (Xcpt NullPointer, Object), (Xcpt ClassCast, Object), (Xcpt OutOfMemory, Object)}" apply (simp add: subcls1_def2) apply (simp add: name_defs class_defs system_defs E_def class_def) apply (auto split: split_if_asm) done text {* The subclass relation is acyclic; hence its converse is well founded: *} lemma notin_rtrancl: "(a,b) \<in> r\<^sup>* \<Longrightarrow> a \<noteq> b \<Longrightarrow> (\<And>y. (a,y) \<notin> r) \<Longrightarrow> False" by (auto elim: converse_rtranclE) lemma acyclic_subcls1_E: "acyclic (subcls1 E)" apply (rule acyclicI) apply (simp add: subcls1) apply (auto dest!: tranclD) apply (auto elim!: notin_rtrancl simp add: name_defs) done lemma wf_subcls1_E: "wf ((subcls1 E)¯)" apply (rule finite_acyclic_wf_converse) apply (simp add: subcls1) apply (rule acyclic_subcls1_E) done text {* Method and field lookup: *} lemma method_Object [simp]: "method (E, Object) sig = (if sig = (init,[]) then Some (Object, PrimT Void, Suc 0, 0, [LitPush Unit, Return], []) else None)" by (simp add: method_rec_lemma [OF class_Object wf_subcls1_E] Object_ctor_def) lemma method_append [simp]: "method (E, list_name) (append_name, [Class list_name]) = Some (list_name, PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])" apply (insert class_list) apply (unfold list_class_def) apply (drule method_rec_lemma [OF _ wf_subcls1_E]) apply (simp add: name_defs Default_ctor_def) done lemma method_makelist [simp]: "method (E, test_name) (makelist_name, []) = Some (test_name, PrimT Void, 3, 2, make_list_ins, [])" apply (insert class_test) apply (unfold test_class_def) apply (drule method_rec_lemma [OF _ wf_subcls1_E]) apply (simp add: name_defs Default_ctor_def) done lemma method_default_ctor [simp]: "method (E, list_name) (init, []) = Some (list_name,PrimT Void,1,0,[Load 0,Invoke_special Object init [],Return],[])" apply (insert class_list) apply (unfold list_class_def) apply (drule method_rec_lemma [OF _ wf_subcls1_E]) apply (simp add: name_defs Default_ctor_def) done lemma field_val [simp]: "field (E, list_name) val_name = Some (list_name, PrimT Integer)" apply (unfold field_def) apply (insert class_list) apply (unfold list_class_def) apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) apply simp done lemma field_next [simp]: "field (E, list_name) next_name = Some (list_name, Class list_name)" apply (unfold field_def) apply (insert class_list) apply (unfold list_class_def) apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) apply (simp add: name_defs distinct_fields [symmetric]) done lemma [simp]: "fields (E, Object) = []" by (simp add: fields_rec_lemma [OF class_Object wf_subcls1_E]) lemma [simp]: "fields (E, Xcpt NullPointer) = []" by (simp add: fields_rec_lemma [OF class_NullPointer wf_subcls1_E]) lemma [simp]: "fields (E, Xcpt ClassCast) = []" by (simp add: fields_rec_lemma [OF class_ClassCast wf_subcls1_E]) lemma [simp]: "fields (E, Xcpt OutOfMemory) = []" by (simp add: fields_rec_lemma [OF class_OutOfMemory wf_subcls1_E]) lemma [simp]: "fields (E, test_name) = []" apply (insert class_test) apply (unfold test_class_def) apply (drule fields_rec_lemma [OF _ wf_subcls1_E]) apply simp done lemmas [simp] = is_class_def text {* The next definition and three proof rules implement an algorithm to enumarate natural numbers. The command @{text "apply (elim pc_end pc_next pc_0"} transforms a goal of the form @{prop [display] "pc < n \<Longrightarrow> P pc"} into a series of goals @{prop [display] "P 0"} @{prop [display] "P (Suc 0)"} @{text "\<dots>"} @{prop [display] "P n"} *} constdefs intervall :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" ("_ \<in> [_, _')") "x \<in> [a, b) \<equiv> a \<le> x \<and> x < b" lemma pc_0: "x < n \<Longrightarrow> (x \<in> [0, n) \<Longrightarrow> P x) \<Longrightarrow> P x" by (simp add: intervall_def) lemma pc_next: "x \<in> [n0, n) \<Longrightarrow> P n0 \<Longrightarrow> (x \<in> [Suc n0, n) \<Longrightarrow> P x) \<Longrightarrow> P x" apply (cases "x=n0") apply (auto simp add: intervall_def) done lemma pc_end: "x \<in> [n,n) \<Longrightarrow> P x" by (unfold intervall_def) arith section "Program structure" text {* The program is structurally wellformed: *} lemma wf_struct: "wf_prog (\<lambda>G C mb. True) E" (is "wf_prog ?mb E") proof - note simps [simp] = wf_mdecl_def wf_mhead_def wf_cdecl_def system_defs have "unique E" by (simp add: E_def class_defs name_defs) moreover have "set JVMSystemClasses \<subseteq> set E" by (simp add: E_def) hence "wf_syscls E" by (rule wf_syscls) moreover have "wf_cdecl ?mb E ObjectC" by simp moreover have "wf_cdecl ?mb E NullPointerC" by (auto elim: notin_rtrancl simp add: name_defs subcls1) moreover have "wf_cdecl ?mb E ClassCastC" by (auto elim: notin_rtrancl simp add: name_defs subcls1) moreover have "wf_cdecl ?mb E OutOfMemoryC" by (auto elim: notin_rtrancl simp add: name_defs subcls1) moreover have "wf_cdecl ?mb E (list_name, list_class)" apply (auto elim!: notin_rtrancl simp add: wf_fdecl_def list_class_def subcls1) apply (auto simp add: name_defs) done moreover have "wf_cdecl ?mb E (test_name, test_class)" apply (auto elim!: notin_rtrancl simp add: wf_fdecl_def test_class_def subcls1) apply (auto simp add: name_defs) done ultimately show ?thesis by (simp del: simps add: wf_prog_def E_def JVMSystemClasses_def) qed section "Welltypings" text {* We show welltypings of all methods in the program @{text E}. The more interesting ones are @{term append_name} in class @{term list_name}, and @{term makelist_name} in class @{term test_name}. The rest are default constructors. *} lemmas eff_simps [simp] = eff_def norm_eff_def xcpt_eff_def eff_bool_def subtype_def declare appInvoke [simp del] appInvoke_special [simp del] constdefs phi_obj_ctor :: method_type ("\<phi>\<^sub>o") "\<phi>\<^sub>o \<equiv> [Some (([], [OK (Init (Class Object))]), True), Some (([Init (PrimT Void)], [OK (Init (Class Object))]), True)]" section {* Executability of @{term check_bounded} *} consts list_all'_rec :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> bool" primrec "list_all'_rec P n [] = True" "list_all'_rec P n (x#xs) = (P x n \<and> list_all'_rec P (Suc n) xs)" constdefs list_all' :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" "list_all' P xs \<equiv> list_all'_rec P 0 xs" lemma list_all'_rec: "\<And>n. list_all'_rec P n xs = (\<forall>p < size xs. P (xs!p) (p+n))" apply (induct xs) apply auto apply (case_tac p) apply auto done lemma list_all': "list_all' P xs = (\<forall>n < size xs. P (xs!n) n)" by (unfold list_all'_def) (simp add: list_all'_rec) lemma list_all_ball: "list_all P xs = (\<forall>x \<in> set xs. P x)" by (induct xs) auto lemma [simp]: "check_bounded ins et = (list_all' (\<lambda>i pc. list_all (\<lambda>pc'. pc' < length ins) (succs i pc)) ins \<and> list_all (\<lambda>e. fst (snd (snd e)) < length ins) et)" by (simp add: list_all_ball list_all' check_bounded_def) declare list_all'_def [simp] lemma init_tys_def2 [simp]: "init_tys E = {Init y | y. is_type E y} \<union> {UnInit c n | c n. True} \<union> {PartInit c | c. True}" apply (unfold init_tys_def JType.esl_def) apply auto done lemma check_types_lemma [simp]: "b \<in> list mxr (err (init_tys E)) \<Longrightarrow> a \<in> list (length a) (init_tys E) \<Longrightarrow> length a \<le> mxs \<Longrightarrow> OK (Some ((a, b), x)) \<in> states E mxs mxr" apply (unfold states_def) apply (unfold JVMType.sl_def) apply (unfold Err.sl_def Err.esl_def Opt.esl_def Product.esl_def stk_esl_def reg_sl_def TrivLat.esl_def upto_esl_def Listn.sl_def Init.esl_def) apply (simp (no_asm) del: init_tys_def2) apply blast done lemma Object_init [simp]: "wt_method E Object init [] (PrimT Void) (Suc 0) 0 [LitPush Unit, Return] [] \<phi>\<^sub>o" apply (simp add: wt_method_def phi_obj_ctor_def wt_start_def wt_instr_def) apply (simp add: check_types_def) apply clarify apply (elim pc_end pc_next pc_0) apply fastsimp apply fastsimp done constdefs phi_default_ctor :: "cname \<Rightarrow> method_type" ("\<phi>\<^sub>c _") "\<phi>\<^sub>c C \<equiv> [Some (([], [OK (PartInit C)]), False), Some (([PartInit C], [OK (PartInit C)]), False), Some (([Init (PrimT Void)], [OK (Init (Class C))]), True)]" lemma [simp]: "Ex Not" by fast lemma [simp]: "\<exists>z. z" by fast lemma default_ctor [simp]: "E \<turnstile> C \<prec>C1 Object \<Longrightarrow> is_class E C \<Longrightarrow> wt_method E C init [] (PrimT Void) (Suc 0) 0 [Load 0, Invoke_special Object init [], Return] [] (\<phi>\<^sub>c C)" apply (simp add: wt_method_def phi_default_ctor_def wt_start_def wt_instr_def check_types_def) apply (rule conjI) apply clarify apply (elim pc_end pc_next pc_0) apply simp apply (simp add: app_def xcpt_app_def replace_def) apply simp apply (fast dest: subcls1_wfD [OF _ wf_struct]) done constdefs phi_append :: method_type ("\<phi>\<^sub>a") "\<phi>\<^sub>a \<equiv> map (\<lambda>(x,y). Some ((map Init x, map (OK \<circ> Init) y), False)) [ ( [], [Class list_name, Class list_name]), ( [Class list_name], [Class list_name, Class list_name]), ( [Class list_name], [Class list_name, Class list_name]), ( [Class list_name, Class list_name], [Class list_name, Class list_name]), ([NT, Class list_name, Class list_name], [Class list_name, Class list_name]), ( [Class list_name], [Class list_name, Class list_name]), ( [Class list_name, Class list_name], [Class list_name, Class list_name]), ( [PrimT Void], [Class list_name, Class list_name]), ( [Class Object], [Class list_name, Class list_name]), ( [], [Class list_name, Class list_name]), ( [Class list_name], [Class list_name, Class list_name]), ( [Class list_name, Class list_name], [Class list_name, Class list_name]), ( [], [Class list_name, Class list_name]), ( [PrimT Void], [Class list_name, Class list_name])]" lemma wt_append [simp]: "wt_method E list_name append_name [Class list_name] (PrimT Void) 3 0 append_ins [(Suc 0, 2, 8, Xcpt NullPointer)] \<phi>\<^sub>a" apply (simp add: wt_method_def append_ins_def phi_append_def wt_start_def wt_instr_def name_defs) apply (fold name_defs) apply (simp add: check_types_def) apply clarify apply (elim pc_end pc_next pc_0) apply simp apply (fastsimp simp add: match_exception_entry_def sup_state_conv subcls1) apply simp apply simp apply (fastsimp simp add: sup_state_conv subcls1) apply simp apply (simp add: app_def xcpt_app_def) apply simp apply simp apply simp apply simp apply (simp add: match_exception_entry_def) apply simp apply simp done text {* Some abbreviations for readability *} syntax list :: ty test :: ty intg :: ty void :: ty translations "list" == "Init (Class list_name)" "test" == "Init (Class test_name)" "intg" == "Init (PrimT Integer)" "void" == "Init (PrimT Void)" constdefs phi_makelist :: method_type ("\<phi>\<^sub>m") "\<phi>\<^sub>m \<equiv> map (\<lambda>x. Some (x,False)) [ ( [], [OK test, Err, Err]), ( [UnInit list_name 0], [OK test, Err, Err]), ( [UnInit list_name 0, UnInit list_name 0], [OK test, Err, Err]), ([UnInit list_name 0,UnInit list_name 0,UnInit list_name 0],[OK test,Err,Err]), ( [void, list, list], [OK test, Err, Err]), ( [list, list], [OK test, Err, Err]), ( [list], [OK list, Err, Err]), ( [intg, list], [OK list, Err, Err]), ( [], [OK list, Err, Err]), ( [UnInit list_name 8], [OK list, Err, Err]), ( [UnInit list_name 8, UnInit list_name 8], [OK list, Err, Err]), ( [void, list], [OK list, Err, Err]), ( [list], [OK list, Err, Err]), ( [list, list], [OK list, Err, Err]), ( [list], [OK list, OK list, Err]), ( [intg, list], [OK list, OK list, Err]), ( [], [OK list, OK list, Err]), ( [UnInit list_name 16], [OK list, OK list, Err]), ( [UnInit list_name 16, UnInit list_name 16], [OK list, OK list, Err]), ( [void, list], [OK list, OK list, Err]), ( [list], [OK list, OK list, Err]), ( [list, list], [OK list, OK list, Err]), ( [list], [OK list, OK list, OK list]), ( [intg, list], [OK list, OK list, OK list]), ( [], [OK list, OK list, OK list]), ( [list], [OK list, OK list, OK list]), ( [list, list], [OK list, OK list, OK list]), ( [void], [OK list, OK list, OK list]), ( [list, void], [OK list, OK list, OK list]), ( [list, list, void], [OK list, OK list, OK list]), ( [void, void], [OK list, OK list, OK list]) ]" lemma wt_makelist [simp]: "wt_method E test_name makelist_name [] (PrimT Void) 3 2 make_list_ins [] \<phi>\<^sub>m" apply (simp add: wt_method_def make_list_ins_def phi_makelist_def) apply (simp add: wt_start_def nat_number) apply (simp add: wt_instr_def name_defs) apply (fold name_defs) apply (simp add: check_types_def) apply clarify apply (elim pc_end pc_next pc_0) apply (simp add: replace_def) apply simp apply simp apply (simp add: app_def xcpt_app_def replace_def) apply simp apply simp apply simp apply simp apply (simp add: replace_def) apply simp apply simp apply (simp add: app_def xcpt_app_def replace_def) apply simp apply simp apply simp apply simp apply simp apply (simp add: replace_def) apply simp apply simp apply (simp add: app_def xcpt_app_def replace_def) apply simp apply simp apply simp apply simp apply simp apply simp apply simp apply (simp add: app_def xcpt_app_def) apply simp apply simp apply (simp add: app_def xcpt_app_def) apply simp done text {* The whole program is welltyped: *} constdefs Phi :: prog_type ("\<Phi>") "\<Phi> C sig \<equiv> if C = Object \<and> sig = (init,[]) then \<phi>\<^sub>o else if C = test_name \<and> sig = (makelist_name, []) then \<phi>\<^sub>m else if C = list_name \<and> sig = (append_name, [Class list_name]) then \<phi>\<^sub>a else if sig = (init,[]) then \<phi>\<^sub>c C else []" lemma [simp]: "is_class E C = (C \<in> {Cname list_nam, Cname test_nam, Xcpt NullPointer, Xcpt ClassCast, Xcpt OutOfMemory, Object})" apply (insert E_classes) apply (auto simp add: name_defs) done declare is_class_def [simp del] lemma wf_prog: "wt_jvm_prog E \<Phi>" apply (unfold wt_jvm_prog_def) apply (rule wf_mb'E [OF wf_struct]) apply (simp add: E_def) apply clarify apply (fold E_def) apply (simp add: system_defs class_defs) apply auto apply (auto simp add: Phi_def) apply (insert subcls1) apply (auto simp add: name_defs) done section "Conformance" text {* Execution of the program will be typesafe, because its start state conforms to the welltyping: *} lemma "E,\<Phi> \<turnstile>JVM start_state E test_name makelist_name \<surd>" apply (rule BV_correct_initial) apply (rule wf_prog) apply (auto simp add: is_class_def) done end
lemmas name_defs:
list_name == Cname list_nam
test_name == Cname test_nam
val_name == VName val_nam
next_name == VName next_nam
lemmas system_defs:
JVMSystemClasses == [ObjectC, NullPointerC, ClassCastC, OutOfMemoryC]
ObjectC_decl ms == (Object, arbitrary, [], ms)
NullPointerC_decl ms == (Xcpt NullPointer, Object, [], ms)
ClassCastC_decl ms == (Xcpt ClassCast, Object, [], ms)
OutOfMemoryC_decl ms == (Xcpt OutOfMemory, Object, [], ms)
ObjectC == ObjectC_decl [Object_ctor]
NullPointerC == NullPointerC_decl [Default_ctor]
OutOfMemoryC == OutOfMemoryC_decl [Default_ctor]
ClassCastC == ClassCastC_decl [Default_ctor]
Default_ctor == ((init, []), PrimT Void, 1, 0, [Load 0, Invoke_special Object init [], Return], [])
Object_ctor == ((init, []), PrimT Void, 1, 0, [LitPush Unit, Return], [])
lemmas class_defs:
list_class == (Object, [(val_name, PrimT Integer), (next_name, Class list_name)], [Default_ctor, ((append_name, [Class list_name]), PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])])
test_class == (Object, [], [Default_ctor, ((makelist_name, []), PrimT Void, 3, 2, make_list_ins, [])])
lemma class_Object:
class E Object = Some (arbitrary, [], [Object_ctor])
lemma class_NullPointer:
class E (Xcpt NullPointer) = Some (Object, [], [Default_ctor])
lemma class_OutOfMemory:
class E (Xcpt OutOfMemory) = Some (Object, [], [Default_ctor])
lemma class_ClassCast:
class E (Xcpt ClassCast) = Some (Object, [], [Default_ctor])
lemma class_list:
class E list_name = Some list_class
lemma class_test:
class E test_name = Some test_class
lemma E_classes:
Collect (is_class E) = {list_name, test_name, Xcpt NullPointer, Xcpt ClassCast, Xcpt OutOfMemory, Object}
lemma subcls1:
subcls1 E = {(list_name, Object), (test_name, Object), (Xcpt NullPointer, Object), (Xcpt ClassCast, Object), (Xcpt OutOfMemory, Object)}
lemma notin_rtrancl:
[| (a, b) : r^*; a ~= b; !!y. (a, y) ~: r |] ==> False
lemma acyclic_subcls1_E:
acyclic (subcls1 E)
lemma wf_subcls1_E:
wf ((subcls1 E)^-1)
lemma method_Object:
method (E, Object) sig = (if sig = (init, []) then Some (Object, PrimT Void, Suc 0, 0, [LitPush Unit, Return], []) else None)
lemma method_append:
method (E, list_name) (append_name, [Class list_name]) = Some (list_name, PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])
lemma method_makelist:
method (E, test_name) (makelist_name, []) = Some (test_name, PrimT Void, 3, 2, make_list_ins, [])
lemma method_default_ctor:
method (E, list_name) (init, []) = Some (list_name, PrimT Void, 1, 0, [Load 0, Invoke_special Object init [], Return], [])
lemma field_val:
field (E, list_name) val_name = Some (list_name, PrimT Integer)
lemma field_next:
field (E, list_name) next_name = Some (list_name, Class list_name)
lemma
fields (E, Object) = []
lemma
fields (E, Xcpt NullPointer) = []
lemma
fields (E, Xcpt ClassCast) = []
lemma
fields (E, Xcpt OutOfMemory) = []
lemma
fields (E, test_name) = []
lemmas
is_class G C == class G C ~= None
lemma pc_0:
[| x < n; x \<in> [0, n) ==> P x |] ==> P x
lemma pc_next:
[| x \<in> [n0, n); P n0; x \<in> [Suc n0, n) ==> P x |] ==> P x
lemma pc_end:
x \<in> [n, n) ==> P x
lemma wf_struct:
wf_prog (%G C mb. True) E
lemmas eff_simps:
eff i G pc et s == map (%pc'. (pc', norm_eff i G pc s)) (succs i pc) @ xcpt_eff i G pc s et
norm_eff i G pc == option_map (eff_bool i G pc)
xcpt_eff i G pc s et == map (%C. (the (match_exception_table G C pc et), case s of None => None | Some s' => Some (([Init (Class C)], snd (fst s')), snd s'))) (xcpt_names (i, G, pc, et))
eff_bool i G pc == %((ST, LT), z). (eff' (i, G, pc, ST, LT), if EX C p D. i = Invoke_special C init p & ST ! length p = PartInit D then True else z)
subtype G T1 T2 == G |- T1 <= T2
lemma list_all'_rec:
list_all'_rec P n xs = (ALL p. p < length xs --> P (xs ! p) (p + n))
lemma list_all':
list_all' P xs = (ALL n. n < length xs --> P (xs ! n) n)
lemma list_all_ball:
list_all P xs = Ball (set xs) P
lemma
check_bounded ins et = (list_all' (%i pc. list_all (%pc'. pc' < length ins) (succs i pc)) ins & list_all (%e. fst (snd (snd e)) < length ins) et)
lemma init_tys_def2:
init_tys E = {Init y |y. is_type E y} Un {UnInit c n |c n. True} Un {PartInit c |c. True}
lemma check_types_lemma:
[| b : list mxr (err (init_tys E)); a : list (length a) (init_tys E); length a <= mxs |] ==> OK (Some ((a, b), x)) : states E mxs mxr
lemma Object_init:
wt_method E Object init [] (PrimT Void) (Suc 0) 0 [LitPush Unit, Return] [] \<phi>\<^sub>o
lemma
Ex Not
lemma
EX z. z
lemma default_ctor:
[| E |- C <=C1 Object; is_class E C |] ==> wt_method E C init [] (PrimT Void) (Suc 0) 0 [Load 0, Invoke_special Object init [], Return] [] \<phi>\<^sub>c C
lemma wt_append:
wt_method E list_name append_name [Class list_name] (PrimT Void) 3 0 append_ins [(Suc 0, 2, 8, Xcpt NullPointer)] \<phi>\<^sub>a
lemma wt_makelist:
wt_method E test_name makelist_name [] (PrimT Void) 3 2 make_list_ins [] \<phi>\<^sub>m
lemma
is_class E C = (C : {Cname list_nam, Cname test_nam, Xcpt NullPointer, Xcpt ClassCast, Xcpt OutOfMemory, Object})
lemma wf_prog:
wt_jvm_prog E \<Phi>
lemma
E,\<Phi> |-JVM start_state E test_name makelist_name [ok]