Up to index of Isabelle/HOL/objinit
theory Conform = State + WellType:(* Title: HOL/MicroJava/J/Conform.thy ID: $Id: Conform.html,v 1.1 2002/11/28 14:12:09 kleing Exp $ Author: David von Oheimb Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Conformity Relations for Type Soundness Proof} *} theory Conform = State + WellType: types 'c env_ = "'c prog × (vname \<leadsto> ty)" -- "same as @{text env} of @{text WellType.thy}" constdefs hext :: "aheap => aheap => bool" ("_ <=| _" [51,51] 50) "h<=|h' == \<forall>a C fs. h a = Some(C,fs) --> (\<exists>fs'. h' a = Some(C,fs'))" conf :: "'c prog => aheap => val => ty => bool" ("_,_ |- _ ::<= _" [51,51,51,51] 50) "G,h|-v::<=T == \<exists>T'. typeof (option_map obj_ty o h) v = Some T' \<and> G\<turnstile>T'\<preceq>T" lconf :: "'c prog => aheap => ('a \<leadsto> val) => ('a \<leadsto> ty) => bool" ("_,_ |- _ [::<=] _" [51,51,51,51] 50) "G,h|-vs[::<=]Ts == \<forall>n T. Ts n = Some T --> (\<exists>v. vs n = Some v \<and> G,h|-v::<=T)" oconf :: "'c prog => aheap => obj => bool" ("_,_ |- _ [ok]" [51,51,51] 50) "G,h|-obj [ok] == G,h|-snd obj[::<=]map_of (fields (G,fst obj))" hconf :: "'c prog => aheap => bool" ("_ |-h _ [ok]" [51,51] 50) "G|-h h [ok] == \<forall>a obj. h a = Some obj --> G,h|-obj [ok]" conforms :: "state => java_mb env_ => bool" ("_ ::<= _" [51,51] 50) "s::<=E == prg E|-h heap s [ok] \<and> prg E,heap s|-locals s[::<=]localT E" syntax (xsymbols) hext :: "aheap => aheap => bool" ("_ \<le>| _" [51,51] 50) conf :: "'c prog => aheap => val => ty => bool" ("_,_ \<turnstile> _ ::\<preceq> _" [51,51,51,51] 50) lconf :: "'c prog => aheap => ('a \<leadsto> val) => ('a \<leadsto> ty) => bool" ("_,_ \<turnstile> _ [::\<preceq>] _" [51,51,51,51] 50) oconf :: "'c prog => aheap => obj => bool" ("_,_ \<turnstile> _ \<surd>" [51,51,51] 50) hconf :: "'c prog => aheap => bool" ("_ \<turnstile>h _ \<surd>" [51,51] 50) conforms :: "state => java_mb env_ => bool" ("_ ::\<preceq> _" [51,51] 50) section "hext" lemma hextI: " \<forall>a C fs . h a = Some (C,fs) --> (\<exists>fs'. h' a = Some (C,fs')) ==> h\<le>|h'" apply (unfold hext_def) apply auto done lemma hext_objD: "[|h\<le>|h'; h a = Some (C,fs) |] ==> \<exists>fs'. h' a = Some (C,fs')" apply (unfold hext_def) apply (force) done lemma hext_refl [simp]: "h\<le>|h" apply (rule hextI) apply (fast) done lemma hext_new [simp]: "h a = None ==> h\<le>|h(a\<mapsto>x)" apply (rule hextI) apply auto done lemma hext_trans: "[|h\<le>|h'; h'\<le>|h''|] ==> h\<le>|h''" apply (rule hextI) apply (fast dest: hext_objD) done lemma hext_upd_obj: "h a = Some (C,fs) ==> h\<le>|h(a\<mapsto>(C,fs'))" apply (rule hextI) apply auto done section "conf" lemma conf_Null [simp]: "G,h\<turnstile>Null::\<preceq>T = G\<turnstile>RefT NullT\<preceq>T" apply (unfold conf_def) apply (simp (no_asm)) done lemma conf_litval [rule_format (no_asm), simp]: "typeof (\<lambda>v. None) v = Some T --> G,h\<turnstile>v::\<preceq>T" apply (unfold conf_def) apply (rule val.induct) apply auto done lemma conf_AddrI: "[|h a = Some obj; G\<turnstile>obj_ty obj\<preceq>T|] ==> G,h\<turnstile>Addr a::\<preceq>T" apply (unfold conf_def) apply (simp) done lemma conf_obj_AddrI: "[|h a = Some (C,fs); G\<turnstile>C\<preceq>C D|] ==> G,h\<turnstile>Addr a::\<preceq> Class D" apply (unfold conf_def) apply (simp) done lemma defval_conf [rule_format (no_asm)]: "is_type G T --> G,h\<turnstile>default_val T::\<preceq>T" apply (unfold conf_def) apply (rule_tac "y" = "T" in ty.exhaust) apply (erule ssubst) apply (rule_tac "y" = "prim_ty" in prim_ty.exhaust) apply (auto simp add: widen.null) done lemma conf_upd_obj: "h a = Some (C,fs) ==> (G,h(a\<mapsto>(C,fs'))\<turnstile>x::\<preceq>T) = (G,h\<turnstile>x::\<preceq>T)" apply (unfold conf_def) apply (rule val.induct) apply auto done lemma conf_widen [rule_format (no_asm)]: "wf_prog wf_mb G ==> G,h\<turnstile>x::\<preceq>T --> G\<turnstile>T\<preceq>T' --> G,h\<turnstile>x::\<preceq>T'" apply (unfold conf_def) apply (rule val.induct) apply (auto intro: widen_trans) done lemma conf_hext [rule_format (no_asm)]: "h\<le>|h' ==> G,h\<turnstile>v::\<preceq>T --> G,h'\<turnstile>v::\<preceq>T" apply (unfold conf_def) apply (rule val.induct) apply (auto dest: hext_objD) done lemma new_locD: "[|h a = None; G,h\<turnstile>Addr t::\<preceq>T|] ==> t\<noteq>a" apply (unfold conf_def) apply auto done lemma conf_RefTD [rule_format (no_asm)]: "G,h\<turnstile>a'::\<preceq>RefT T --> a' = Null | (\<exists>a obj T'. a' = Addr a \<and> h a = Some obj \<and> obj_ty obj = T' \<and> G\<turnstile>T'\<preceq>RefT T)" apply (unfold conf_def) apply(induct_tac "a'") apply(auto) done lemma conf_NullTD: "G,h\<turnstile>a'::\<preceq>RefT NullT ==> a' = Null" apply (drule conf_RefTD) apply auto done lemma non_npD: "[|a' \<noteq> Null; G,h\<turnstile>a'::\<preceq>RefT t|] ==> \<exists>a C fs. a' = Addr a \<and> h a = Some (C,fs) \<and> G\<turnstile>Class C\<preceq>RefT t" apply (drule conf_RefTD) apply auto done lemma non_np_objD: "!!G. [|a' \<noteq> Null; G,h\<turnstile>a'::\<preceq> Class C|] ==> (\<exists>a C' fs. a' = Addr a \<and> h a = Some (C',fs) \<and> G\<turnstile>C'\<preceq>C C)" apply (fast dest: non_npD) done lemma non_np_objD' [rule_format (no_asm)]: "a' \<noteq> Null ==> wf_prog wf_mb G ==> G,h\<turnstile>a'::\<preceq>RefT t --> (\<exists>a C fs. a' = Addr a \<and> h a = Some (C,fs) \<and> G\<turnstile>Class C\<preceq>RefT t)" apply(rule_tac "y" = "t" in ref_ty.exhaust) apply (fast dest: conf_NullTD) apply (fast dest: non_np_objD) done lemma conf_list_gext_widen [rule_format (no_asm)]: "wf_prog wf_mb G ==> \<forall>Ts Ts'. list_all2 (conf G h) vs Ts --> list_all2 (\<lambda>T T'. G\<turnstile>T\<preceq>T') Ts Ts' --> list_all2 (conf G h) vs Ts'" apply(induct_tac "vs") apply(clarsimp) apply(clarsimp) apply(frule list_all2_lengthD [THEN sym]) apply(simp (no_asm_use) add: length_Suc_conv) apply(safe) apply(frule list_all2_lengthD [THEN sym]) apply(simp (no_asm_use) add: length_Suc_conv) apply(clarify) apply(fast elim: conf_widen) done section "lconf" lemma lconfD: "[| G,h\<turnstile>vs[::\<preceq>]Ts; Ts n = Some T |] ==> G,h\<turnstile>(the (vs n))::\<preceq>T" apply (unfold lconf_def) apply (force) done lemma lconf_hext [elim]: "[| G,h\<turnstile>l[::\<preceq>]L; h\<le>|h' |] ==> G,h'\<turnstile>l[::\<preceq>]L" apply (unfold lconf_def) apply (fast elim: conf_hext) done lemma lconf_upd: "!!X. [| G,h\<turnstile>l[::\<preceq>]lT; G,h\<turnstile>v::\<preceq>T; lT va = Some T |] ==> G,h\<turnstile>l(va\<mapsto>v)[::\<preceq>]lT" apply (unfold lconf_def) apply auto done lemma lconf_init_vars_lemma [rule_format (no_asm)]: "\<forall>x. P x --> R (dv x) x ==> (\<forall>x. map_of fs f = Some x --> P x) --> (\<forall>T. map_of fs f = Some T --> (\<exists>v. map_of (map (\<lambda>(f,ft). (f, dv ft)) fs) f = Some v \<and> R v T))" apply( induct_tac "fs") apply auto done lemma lconf_init_vars [intro!]: "\<forall>n. \<forall>T. map_of fs n = Some T --> is_type G T ==> G,h\<turnstile>init_vars fs[::\<preceq>]map_of fs" apply (unfold lconf_def init_vars_def) apply auto apply( rule lconf_init_vars_lemma) apply( erule_tac [3] asm_rl) apply( intro strip) apply( erule defval_conf) apply auto done lemma lconf_ext: "[|G,s\<turnstile>l[::\<preceq>]L; G,s\<turnstile>v::\<preceq>T|] ==> G,s\<turnstile>l(vn\<mapsto>v)[::\<preceq>]L(vn\<mapsto>T)" apply (unfold lconf_def) apply auto done lemma lconf_ext_list [rule_format (no_asm)]: "G,h\<turnstile>l[::\<preceq>]L ==> \<forall>vs Ts. distinct vns --> length Ts = length vns --> list_all2 (\<lambda>v T. G,h\<turnstile>v::\<preceq>T) vs Ts --> G,h\<turnstile>l(vns[\<mapsto>]vs)[::\<preceq>]L(vns[\<mapsto>]Ts)" apply (unfold lconf_def) apply( induct_tac "vns") apply( clarsimp) apply( clarsimp) apply( frule list_all2_lengthD) apply( auto simp add: length_Suc_conv) done section "oconf" lemma oconf_hext: "G,h\<turnstile>obj\<surd> ==> h\<le>|h' ==> G,h'\<turnstile>obj\<surd>" apply (unfold oconf_def) apply (fast) done lemma oconf_obj: "G,h\<turnstile>(C,fs)\<surd> = (\<forall>T f. map_of(fields (G,C)) f = Some T --> (\<exists>v. fs f = Some v \<and> G,h\<turnstile>v::\<preceq>T))" apply (unfold oconf_def lconf_def) apply auto done lemmas oconf_objD = oconf_obj [THEN iffD1, THEN spec, THEN spec, THEN mp] section "hconf" lemma hconfD: "[|G\<turnstile>h h\<surd>; h a = Some obj|] ==> G,h\<turnstile>obj\<surd>" apply (unfold hconf_def) apply (fast) done lemma hconfI: "\<forall>a obj. h a=Some obj --> G,h\<turnstile>obj\<surd> ==> G\<turnstile>h h\<surd>" apply (unfold hconf_def) apply (fast) done section "conforms" lemma conforms_heapD: "(h, l)::\<preceq>(G, lT) ==> G\<turnstile>h h\<surd>" apply (unfold conforms_def) apply (simp) done lemma conforms_localD: "(h, l)::\<preceq>(G, lT) ==> G,h\<turnstile>l[::\<preceq>]lT" apply (unfold conforms_def) apply (simp) done lemma conformsI: "[|G\<turnstile>h h\<surd>; G,h\<turnstile>l[::\<preceq>]lT|] ==> (h, l)::\<preceq>(G, lT)" apply (unfold conforms_def) apply auto done lemma conforms_hext: "[|(h,l)::\<preceq>(G,lT); h\<le>|h'; G\<turnstile>h h'\<surd> |] ==> (h',l)::\<preceq>(G,lT)" apply( fast dest: conforms_localD elim!: conformsI lconf_hext) done lemma conforms_upd_obj: "[|(h,l)::\<preceq>(G, lT); G,h(a\<mapsto>obj)\<turnstile>obj\<surd>; h\<le>|h(a\<mapsto>obj)|] ==> (h(a\<mapsto>obj),l)::\<preceq>(G, lT)" apply(rule conforms_hext) apply auto apply(rule hconfI) apply(drule conforms_heapD) apply(tactic {* auto_tac (HOL_cs addEs [thm "oconf_hext"] addDs [thm "hconfD"], simpset() delsimps [split_paired_All]) *}) done lemma conforms_upd_local: "[|(h, l)::\<preceq>(G, lT); G,h\<turnstile>v::\<preceq>T; lT va = Some T|] ==> (h, l(va\<mapsto>v))::\<preceq>(G, lT)" apply (unfold conforms_def) apply( auto elim: lconf_upd) done end
lemma hextI:
ALL a C fs. h a = Some (C, fs) --> (EX fs'. h' a = Some (C, fs')) ==> h <=| h'
lemma hext_objD:
[| h <=| h'; h a = Some (C, fs) |] ==> EX fs'. h' a = Some (C, fs')
lemma hext_refl:
h <=| h
lemma hext_new:
h a = None ==> h <=| h(a|->x)
lemma hext_trans:
[| h <=| h'; h' <=| h'' |] ==> h <=| h''
lemma hext_upd_obj:
h a = Some (C, fs) ==> h <=| h(a|->(C, fs'))
lemma conf_Null:
(G,h |- Null ::<= T) = G |- NT <= T
lemma conf_litval:
typeof (%v. None) v = Some T ==> G,h |- v ::<= T
lemma conf_AddrI:
[| h a = Some obj; G |- obj_ty obj <= T |] ==> G,h |- Addr a ::<= T
lemma conf_obj_AddrI:
[| h a = Some (C, fs); G |- C <=C D |] ==> G,h |- Addr a ::<= Class D
lemma defval_conf:
is_type G T ==> G,h |- default_val T ::<= T
lemma conf_upd_obj:
h a = Some (C, fs) ==> (G,h(a|->(C, fs')) |- x ::<= T) = (G,h |- x ::<= T)
lemma conf_widen:
[| wf_prog wf_mb G; G,h |- x ::<= T; G |- T <= T' |] ==> G,h |- x ::<= T'
lemma conf_hext:
[| h <=| h'; G,h |- v ::<= T |] ==> G,h' |- v ::<= T
lemma new_locD:
[| h a = None; G,h |- Addr t ::<= T |] ==> t ~= a
lemma conf_RefTD:
G,h |- a' ::<= RefT T ==> a' = Null | (EX a obj T'. a' = Addr a & h a = Some obj & obj_ty obj = T' & G |- T' <= RefT T)
lemma conf_NullTD:
G,h |- a' ::<= NT ==> a' = Null
lemma non_npD:
[| a' ~= Null; G,h |- a' ::<= RefT t |] ==> EX a C fs. a' = Addr a & h a = Some (C, fs) & G |- Class C <= RefT t
lemma non_np_objD:
[| a' ~= Null; G,h |- a' ::<= Class C |] ==> EX a C' fs. a' = Addr a & h a = Some (C', fs) & G |- C' <=C C
lemma non_np_objD':
[| a' ~= Null; wf_prog wf_mb G; G,h |- a' ::<= RefT t |] ==> EX a C fs. a' = Addr a & h a = Some (C, fs) & G |- Class C <= RefT t
lemma conf_list_gext_widen:
[| wf_prog wf_mb G; list_all2 (conf G h) vs Ts; list_all2 (%T T'. G |- T <= T') Ts Ts' |] ==> list_all2 (conf G h) vs Ts'
lemma lconfD:
[| G,h |- vs [::<=] Ts; Ts n = Some T |] ==> G,h |- the (vs n) ::<= T
lemma lconf_hext:
[| G,h |- l [::<=] L; h <=| h' |] ==> G,h' |- l [::<=] L
lemma lconf_upd:
[| G,h |- l [::<=] lT; G,h |- v ::<= T; lT va = Some T |] ==> G,h |- l(va|->v) [::<=] lT
lemma lconf_init_vars_lemma:
[| ALL x. P x --> R (dv x) x; ALL x. map_of fs f = Some x --> P x; map_of fs f = Some T |] ==> EX v. map_of (map (%(f, ft). (f, dv ft)) fs) f = Some v & R v T
lemma lconf_init_vars:
ALL n T. map_of fs n = Some T --> is_type G T ==> G,h |- init_vars fs [::<=] map_of fs
lemma lconf_ext:
[| G,s |- l [::<=] L; G,s |- v ::<= T |] ==> G,s |- l(vn|->v) [::<=] L(vn|->T)
lemma lconf_ext_list:
[| G,h |- l [::<=] L; distinct vns; length Ts = length vns; list_all2 (conf G h) vs Ts |] ==> G,h |- l(vns[|->]vs) [::<=] L(vns[|->]Ts)
lemma oconf_hext:
[| G,h |- obj [ok]; h <=| h' |] ==> G,h' |- obj [ok]
lemma oconf_obj:
(G,h |- (C, fs) [ok]) = (ALL T f. map_of (fields (G, C)) f = Some T --> (EX v. fs f = Some v & G,h |- v ::<= T))
lemmas oconf_objD:
[| G_4,h_4 |- (C_4, fs_4) [ok]; map_of (fields (G_4, C_4)) x_1 = Some x_2 |] ==> EX v. fs_4 x_1 = Some v & G_4,h_4 |- v ::<= x_2
lemma hconfD:
[| G |-h h [ok]; h a = Some obj |] ==> G,h |- obj [ok]
lemma hconfI:
ALL a obj. h a = Some obj --> G,h |- obj [ok] ==> G |-h h [ok]
lemma conforms_heapD:
(h, l) ::<= (G, lT) ==> G |-h h [ok]
lemma conforms_localD:
(h, l) ::<= (G, lT) ==> G,h |- l [::<=] lT
lemma conformsI:
[| G |-h h [ok]; G,h |- l [::<=] lT |] ==> (h, l) ::<= (G, lT)
lemma conforms_hext:
[| (h, l) ::<= (G, lT); h <=| h'; G |-h h' [ok] |] ==> (h', l) ::<= (G, lT)
lemma conforms_upd_obj:
[| (h, l) ::<= (G, lT); G,h(a|->obj) |- obj [ok]; h <=| h(a|->obj) |] ==> (h(a|->obj), l) ::<= (G, lT)
lemma conforms_upd_local:
[| (h, l) ::<= (G, lT); G,h |- v ::<= T; lT va = Some T |] ==> (h, l(va|->v)) ::<= (G, lT)