Theory JVMDefensive

Up to index of Isabelle/HOL/objinit

theory JVMDefensive = JVMExec:
(*  Title:      HOL/MicroJava/JVM/JVMDefensive.thy
    ID:         $Id: JVMDefensive.html,v 1.1 2002/11/28 14:12:09 kleing Exp $
    Author:     Gerwin Klein
    Copyright   GPL
*)

header {* \isaheader{A Defensive JVM} *}

theory JVMDefensive = JVMExec:

text {*
  Extend the state space by one element indicating a type error (or
  other abnormal termination) *}
datatype 'a type_error = TypeError | Normal 'a


syntax "fifth" :: "'a × 'b × 'c × 'd × 'e × 'f \<Rightarrow> 'e"
translations
  "fifth x" == "fst(snd(snd(snd(snd x))))"


consts isAddr :: "val \<Rightarrow> bool"
primrec
  "isAddr Unit       = False"
  "isAddr Null       = False"
  "isAddr (Bool b)   = False"
  "isAddr (Intg i)   = False"
  "isAddr (Addr loc) = True"

consts isIntg :: "val \<Rightarrow> bool"
primrec
  "isIntg Unit       = False"
  "isIntg Null       = False"
  "isIntg (Bool b)   = False"
  "isIntg (Intg i)   = True"
  "isIntg (Addr loc) = False"

constdefs
  isRef :: "val \<Rightarrow> bool"
  "isRef v \<equiv> v = Null \<or> isAddr v"



consts
  check_instr :: "[instr, jvm_prog, aheap, init_heap, opstack, locvars, 
                  cname, sig, p_count, ref_upd, p_count, frame list] \<Rightarrow> bool"
primrec 
  "check_instr (Load idx) G hp ihp stk vars C sig pc z maxpc frs = 
  (idx < length vars)"

  "check_instr (Store idx) G hp ihp stk vars Cl sig pc z maxpc frs = 
  (0 < length stk \<and> idx < length vars)"

  "check_instr (LitPush v) G hp ihp stk vars Cl sig pc z maxpc frs = 
  (¬isAddr v)"

  "check_instr (New C) G hp ihp stk vars Cl sig pc z maxpc frs = 
  is_class G C"

  "check_instr (Getfield F C) G hp ihp stk vars Cl sig pc z maxpc frs = 
  (0 < length stk \<and> is_class G C \<and> field (G,C) F \<noteq> None \<and> 
  (let (C', T) = the (field (G,C) F); ref = hd stk in 
    C' = C \<and> isRef ref \<and> (ref \<noteq> Null \<longrightarrow> 
      hp (the_Addr ref) \<noteq> None \<and> is_init hp ihp ref \<and> 
      (let (D,vs) = the (hp (the_Addr ref)) in 
        G \<turnstile> D \<preceq>C C \<and> vs (F,C) \<noteq> None \<and> G,hp \<turnstile> the (vs (F,C)) ::\<preceq> T))))" 

  "check_instr (Putfield F C) G hp ihp stk vars Cl sig pc z maxpc frs = 
  (1 < length stk \<and> is_class G C \<and> field (G,C) F \<noteq> None \<and> 
  (let (C', T) = the (field (G,C) F); v = hd stk; ref = hd (tl stk) in 
    C' = C \<and> is_init hp ihp v \<and> isRef ref \<and> (ref \<noteq> Null \<longrightarrow> 
      hp (the_Addr ref) \<noteq> None \<and> is_init hp ihp ref \<and> 
      (let (D,vs) = the (hp (the_Addr ref)) in 
        G \<turnstile> D \<preceq>C C \<and> G,hp \<turnstile> v ::\<preceq> T))))" 

  "check_instr (Checkcast C) G hp ihp stk vars Cl sig pc z maxpc frs =
  (0 < length stk \<and> is_class G C \<and> isRef (hd stk) \<and> is_init hp ihp (hd stk))"


  "check_instr (Invoke C mn ps) G hp ihp stk vars Cl sig pc z maxpc frs =
  (length ps < length stk \<and> mn \<noteq> init \<and>
  (let n = length ps; v = stk!n in
  isRef v \<and> (v \<noteq> Null \<longrightarrow> 
    hp (the_Addr v) \<noteq> None \<and> is_init hp ihp v \<and>
    method (G,cname_of hp v) (mn,ps) \<noteq> None \<and>
    list_all2 (\<lambda>v T. G,hp \<turnstile> v ::\<preceq> T \<and> is_init hp ihp v) (rev (take n stk)) ps)))"
  

  "check_instr (Invoke_special C mn ps) G hp ihp stk vars Cl sig pc z maxpc frs =
  (length ps < length stk \<and> mn = init \<and>
  (let n = length ps; ref = stk!n in
  isRef ref \<and> (ref \<noteq> Null \<longrightarrow> 
    hp (the_Addr ref) \<noteq> None \<and>
    method (G,C) (mn,ps) \<noteq> None \<and>
    fst (the (method (G,C) (mn,ps))) = C \<and>
    list_all2 (\<lambda>v T. G,hp \<turnstile> v ::\<preceq> T \<and> is_init hp ihp v) (rev (take n stk)) ps) \<and>
    (case ihp (the_Addr ref) of 
       Init T \<Rightarrow> False 
     | UnInit C' pc' \<Rightarrow> C' = C 
     | PartInit C' \<Rightarrow> C' = Cl \<and> G \<turnstile> C' \<prec>C1 C)
  ))"

  "check_instr Return G hp ihp stk0 vars Cl sig0 pc z0 maxpc frs =
  (0 < length stk0 \<and> (0 < length frs \<longrightarrow> 
    method (G,Cl) sig0 \<noteq> None \<and>    
    (let v = hd stk0;  (C, rT, body) = the (method (G,Cl) sig0) in
    Cl = C \<and> G,hp \<turnstile> v ::\<preceq> rT \<and> is_init hp ihp v) \<and>
    (fst sig0 = init \<longrightarrow> 
      snd z0 \<noteq> Null \<and> isRef (snd z0) \<and> is_init hp ihp (snd z0))))"
 
  "check_instr Pop G hp ihp stk vars Cl sig pc z maxpc frs = 
  (0 < length stk)"

  "check_instr Dup G hp ihp stk vars Cl sig pc z maxpc frs = 
  (0 < length stk)"

  "check_instr Dup_x1 G hp ihp stk vars Cl sig pc z maxpc frs = 
  (1 < length stk)"

  "check_instr Dup_x2 G hp ihp stk vars Cl sig pc z maxpc frs = 
  (2 < length stk)"

  "check_instr Swap G hp ihp stk vars Cl sig pc z maxpc frs =
  (1 < length stk)"

  "check_instr IAdd G hp ihp stk vars Cl sig pc z maxpc frs =
  (1 < length stk \<and> isIntg (hd stk) \<and> isIntg (hd (tl stk)))"

  "check_instr (Ifcmpeq b) G hp ihp stk vars Cl sig pc z maxpc frs =
  (1 < length stk \<and> 0 \<le> int pc+b \<and> nat(int pc+b) < maxpc)"

  "check_instr (Goto b) G hp ihp stk vars Cl sig pc z maxpc frs =
  (0 \<le> int pc+b \<and> nat(int pc+b) < maxpc)"

  "check_instr Throw G hp ihp stk vars Cl sig pc z maxpc frs =
  (0 < length stk \<and> isRef (hd stk) \<and> is_init hp ihp (hd stk))"


constdefs
  check :: "jvm_prog \<Rightarrow> jvm_state \<Rightarrow> bool"
  "check G s \<equiv> let (xcpt, hp, ihp, frs) = s in
               (case frs of [] \<Rightarrow> True | (stk,loc,C,sig,pc,z)#frs' \<Rightarrow> 
                (let ins = fifth (the (method (G,C) sig)); i = ins!pc in
                 check_instr i G hp ihp stk loc C sig pc z (length ins) frs'))"


  exec_d :: "jvm_prog \<Rightarrow> jvm_state type_error \<Rightarrow> jvm_state option type_error"
  "exec_d G s \<equiv> case s of 
      TypeError \<Rightarrow> TypeError 
    | Normal s' \<Rightarrow> if check G s' then Normal (exec (G, s')) else TypeError"


consts
  "exec_all_d" :: "jvm_prog \<Rightarrow> jvm_state type_error \<Rightarrow> jvm_state type_error \<Rightarrow> bool" 
                   ("_ |- _ -jvmd-> _" [61,61,61]60)

syntax (xsymbols)
  "exec_all_d" :: "jvm_prog \<Rightarrow> jvm_state type_error \<Rightarrow> jvm_state type_error \<Rightarrow> bool" 
                   ("_ \<turnstile> _ -jvmd\<rightarrow> _" [61,61,61]60)  
 
defs
  exec_all_d_def:
  "G \<turnstile> s -jvmd\<rightarrow> t \<equiv>
         (s,t) \<in> ({(s,t). exec_d G s = TypeError \<and> t = TypeError} \<union> 
                  {(s,t). \<exists>t'. exec_d G s = Normal (Some t') \<and> t = Normal t'})\<^sup>*"


declare split_paired_All [simp del]
declare split_paired_Ex [simp del]

lemma [dest!]:
  "(if P then A else B) \<noteq> B \<Longrightarrow> P"
  by (cases P, auto)

lemma exec_d_no_errorI [intro]:
  "check G s \<Longrightarrow> exec_d G (Normal s) \<noteq> TypeError"
  by (unfold exec_d_def) simp

theorem no_type_error_commutes:
  "exec_d G (Normal s) \<noteq> TypeError \<Longrightarrow> 
  exec_d G (Normal s) = Normal (exec (G, s))"
  by (unfold exec_d_def, auto)


lemma defensive_imp_aggressive:
  "G \<turnstile> (Normal s) -jvmd\<rightarrow> (Normal t) \<Longrightarrow> G \<turnstile> s -jvm\<rightarrow> t"
proof -
  have "\<And>x y. G \<turnstile> x -jvmd\<rightarrow> y \<Longrightarrow> \<forall>s t. x = Normal s \<longrightarrow> y = Normal t \<longrightarrow>  G \<turnstile> s -jvm\<rightarrow> t"
    apply (unfold exec_all_d_def)
    apply (erule rtrancl_induct)
     apply (simp add: exec_all_def)
    apply (fold exec_all_d_def)
    apply simp
    apply (intro allI impI)
    apply (erule disjE, simp)
    apply (elim exE conjE)
    apply (erule allE, erule impE, assumption)
    apply (simp add: exec_all_def exec_d_def split: type_error.splits split_if_asm)
    apply (rule rtrancl_trans, assumption)
    apply blast
    done
  moreover
  assume "G \<turnstile> (Normal s) -jvmd\<rightarrow> (Normal t)" 
  ultimately
  show "G \<turnstile> s -jvm\<rightarrow> t" by blast
qed

end

lemma

  (if P then A else B) ~= B ==> P

lemma exec_d_no_errorI:

  check G s ==> exec_d G (Normal s) ~= TypeError

theorem no_type_error_commutes:

  exec_d G (Normal s) ~= TypeError ==> exec_d G (Normal s) = Normal (exec (G, s))

lemma defensive_imp_aggressive:

  G |- Normal s -jvmd-> Normal t ==> G |- s -jvm-> t