Up to index of Isabelle/HOL/objinit
theory Listn = Err:(* Title: HOL/MicroJava/BV/Listn.thy ID: $Id: Listn.html,v 1.1 2002/11/28 14:12:09 kleing Exp $ Author: Tobias Nipkow Copyright 2000 TUM Lists of a fixed length *) header {* \isaheader{Fixed Length Lists} *} theory Listn = Err: constdefs list :: "nat \<Rightarrow> 'a set \<Rightarrow> 'a list set" "list n A == {xs. length xs = n & set xs <= A}" le :: "'a ord \<Rightarrow> ('a list)ord" "le r == list_all2 (%x y. x <=_r y)" syntax "@lesublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool" ("(_ /<=[_] _)" [50, 0, 51] 50) syntax "@lesssublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool" ("(_ /<[_] _)" [50, 0, 51] 50) translations "x <=[r] y" == "x <=_(Listn.le r) y" "x <[r] y" == "x <_(Listn.le r) y" constdefs map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" "map2 f == (%xs ys. map (split f) (zip xs ys))" syntax "@plussublist" :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b list \<Rightarrow> 'c list" ("(_ /+[_] _)" [65, 0, 66] 65) translations "x +[f] y" == "x +_(map2 f) y" consts coalesce :: "'a err list \<Rightarrow> 'a list err" primrec "coalesce [] = OK[]" "coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)" constdefs sl :: "nat \<Rightarrow> 'a sl \<Rightarrow> 'a list sl" "sl n == %(A,r,f). (list n A, le r, map2 f)" sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list err" "sup f == %xs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err" upto_esl :: "nat \<Rightarrow> 'a esl \<Rightarrow> 'a list esl" "upto_esl m == %(A,r,f). (Union{list n A |n. n <= m}, le r, sup f)" lemmas [simp] = set_update_subsetI lemma unfold_lesub_list: "xs <=[r] ys == Listn.le r xs ys" by (simp add: lesub_def) lemma Nil_le_conv [iff]: "([] <=[r] ys) = (ys = [])" apply (unfold lesub_def Listn.le_def) apply simp done lemma Cons_notle_Nil [iff]: "~ x#xs <=[r] []" apply (unfold lesub_def Listn.le_def) apply simp done lemma Cons_le_Cons [iff]: "x#xs <=[r] y#ys = (x <=_r y & xs <=[r] ys)" apply (unfold lesub_def Listn.le_def) apply simp done lemma Cons_less_Conss [simp]: "order r \<Longrightarrow> x#xs <_(Listn.le r) y#ys = (x <_r y & xs <=[r] ys | x = y & xs <_(Listn.le r) ys)" apply (unfold lesssub_def) apply blast done lemma list_update_le_cong: "\<lbrakk> i<size xs; xs <=[r] ys; x <=_r y \<rbrakk> \<Longrightarrow> xs[i:=x] <=[r] ys[i:=y]"; apply (unfold unfold_lesub_list) apply (unfold Listn.le_def) apply (simp add: list_all2_conv_all_nth nth_list_update) done lemma le_listD: "\<lbrakk> xs <=[r] ys; p < size xs \<rbrakk> \<Longrightarrow> xs!p <=_r ys!p" apply (unfold Listn.le_def lesub_def) apply (simp add: list_all2_conv_all_nth) done lemma le_list_refl: "!x. x <=_r x \<Longrightarrow> xs <=[r] xs" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) done lemma le_list_trans: "\<lbrakk> order r; xs <=[r] ys; ys <=[r] zs \<rbrakk> \<Longrightarrow> xs <=[r] zs" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) apply clarify apply simp apply (blast intro: order_trans) done lemma le_list_antisym: "\<lbrakk> order r; xs <=[r] ys; ys <=[r] xs \<rbrakk> \<Longrightarrow> xs = ys" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) apply (rule nth_equalityI) apply blast apply clarify apply simp apply (blast intro: order_antisym) done lemma order_listI [simp, intro!]: "order r \<Longrightarrow> order(Listn.le r)" apply (subst order_def) apply (blast intro: le_list_refl le_list_trans le_list_antisym dest: order_refl) done lemma lesub_list_impl_same_size [simp]: "xs <=[r] ys \<Longrightarrow> size ys = size xs" apply (unfold Listn.le_def lesub_def) apply (simp add: list_all2_conv_all_nth) done lemma lesssub_list_impl_same_size: "xs <_(Listn.le r) ys \<Longrightarrow> size ys = size xs" apply (unfold lesssub_def) apply auto done lemma le_list_appendI: "\<And>b c d. a <=[r] b \<Longrightarrow> c <=[r] d \<Longrightarrow> a@c <=[r] b@d" apply (induct a) apply simp apply (case_tac b) apply auto done lemma le_listI: "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> a!n <=_r b!n) \<Longrightarrow> a <=[r] b" apply (unfold lesub_def Listn.le_def) apply (simp add: list_all2_conv_all_nth) done lemma listI: "\<lbrakk> length xs = n; set xs <= A \<rbrakk> \<Longrightarrow> xs : list n A" apply (unfold list_def) apply blast done lemma listE_length [simp]: "xs : list n A \<Longrightarrow> length xs = n" apply (unfold list_def) apply blast done lemma less_lengthI: "\<lbrakk> xs : list n A; p < n \<rbrakk> \<Longrightarrow> p < length xs" by simp lemma listE_set [simp]: "xs : list n A \<Longrightarrow> set xs <= A" apply (unfold list_def) apply blast done lemma list_0 [simp]: "list 0 A = {[]}" apply (unfold list_def) apply auto done lemma in_list_Suc_iff: "(xs : list (Suc n) A) = (? y:A. ? ys:list n A. xs = y#ys)" apply (unfold list_def) apply (case_tac "xs") apply auto done lemma Cons_in_list_Suc [iff]: "(x#xs : list (Suc n) A) = (x:A & xs : list n A)"; apply (simp add: in_list_Suc_iff) done lemma list_not_empty: "? a. a:A \<Longrightarrow> ? xs. xs : list n A"; apply (induct "n") apply simp apply (simp add: in_list_Suc_iff) apply blast done lemma nth_in [rule_format, simp]: "!i n. length xs = n \<longrightarrow> set xs <= A \<longrightarrow> i < n \<longrightarrow> (xs!i) : A" apply (induct "xs") apply simp apply (simp add: nth_Cons split: nat.split) done lemma listE_nth_in: "\<lbrakk> xs : list n A; i < n \<rbrakk> \<Longrightarrow> (xs!i) : A" by auto lemma listn_Cons_Suc [elim!]: "l#xs \<in> list n A \<Longrightarrow> (\<And>n'. n = Suc n' \<Longrightarrow> l \<in> A \<Longrightarrow> xs \<in> list n' A \<Longrightarrow> P) \<Longrightarrow> P" by (cases n) auto lemma listn_appendE [elim!]: "a@b \<in> list n A \<Longrightarrow> (\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P) \<Longrightarrow> P" proof - have "\<And>n. a@b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n=n1+n2 \<and> a \<in> list n1 A \<and> b \<in> list n2 A" (is "\<And>n. ?list a n \<Longrightarrow> \<exists>n1 n2. ?P a n n1 n2") proof (induct a) fix n assume "?list [] n" hence "?P [] n 0 n" by simp thus "\<exists>n1 n2. ?P [] n n1 n2" by fast next fix n l ls assume "?list (l#ls) n" then obtain n' where n: "n = Suc n'" "l \<in> A" and "ls@b \<in> list n' A" by fastsimp assume "\<And>n. ls @ b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" hence "\<exists>n1 n2. n' = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" . then obtain n1 n2 where "n' = n1 + n2" "ls \<in> list n1 A" "b \<in> list n2 A" by fast with n have "?P (l#ls) n (n1+1) n2" by simp thus "\<exists>n1 n2. ?P (l#ls) n n1 n2" by fastsimp qed moreover assume "a@b \<in> list n A" "\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P" ultimately show ?thesis by blast qed lemma listt_update_in_list [simp, intro!]: "\<lbrakk> xs : list n A; x:A \<rbrakk> \<Longrightarrow> xs[i := x] : list n A" apply (unfold list_def) apply simp done lemma plus_list_Nil [simp]: "[] +[f] xs = []" apply (unfold plussub_def map2_def) apply simp done lemma plus_list_Cons [simp]: "(x#xs) +[f] ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x +_f y)#(xs +[f] ys))" by (simp add: plussub_def map2_def split: list.split) lemma length_plus_list [rule_format, simp]: "!ys. length(xs +[f] ys) = min(length xs) (length ys)" apply (induct xs) apply simp apply clarify apply (simp (no_asm_simp) split: list.split) done lemma nth_plus_list [rule_format, simp]: "!xs ys i. length xs = n \<longrightarrow> length ys = n \<longrightarrow> i<n \<longrightarrow> (xs +[f] ys)!i = (xs!i) +_f (ys!i)" apply (induct n) apply simp apply clarify apply (case_tac xs) apply simp apply (force simp add: nth_Cons split: list.split nat.split) done lemma (in semilat) plus_list_ub1 [rule_format]: "\<lbrakk> set xs <= A; set ys <= A; size xs = size ys \<rbrakk> \<Longrightarrow> xs <=[r] xs +[f] ys" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) done lemma (in semilat) plus_list_ub2: "\<lbrakk>set xs <= A; set ys <= A; size xs = size ys \<rbrakk> \<Longrightarrow> ys <=[r] xs +[f] ys" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) done lemma (in semilat) plus_list_lub [rule_format]: shows "!xs ys zs. set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> set zs <= A \<longrightarrow> size xs = n & size ys = n \<longrightarrow> xs <=[r] zs & ys <=[r] zs \<longrightarrow> xs +[f] ys <=[r] zs" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) done lemma (in semilat) list_update_incr [rule_format]: "x:A \<Longrightarrow> set xs <= A \<longrightarrow> (!i. i<size xs \<longrightarrow> xs <=[r] xs[i := x +_f xs!i])" apply (unfold unfold_lesub_list) apply (simp add: Listn.le_def list_all2_conv_all_nth) apply (induct xs) apply simp apply (simp add: in_list_Suc_iff) apply clarify apply (simp add: nth_Cons split: nat.split) done lemma acc_le_listI [intro!]: "\<lbrakk> order r; acc r \<rbrakk> \<Longrightarrow> acc(Listn.le r)" apply (unfold acc_def) apply (subgoal_tac "wf(UN n. {(ys,xs). size xs = n & size ys = n & xs <_(Listn.le r) ys})") apply (erule wf_subset) apply (blast intro: lesssub_list_impl_same_size) apply (rule wf_UN) prefer 2 apply clarify apply (rename_tac m n) apply (case_tac "m=n") apply simp apply (rule conjI) apply (fast intro!: equals0I dest: not_sym) apply (fast intro!: equals0I dest: not_sym) apply clarify apply (rename_tac n) apply (induct_tac n) apply (simp add: lesssub_def cong: conj_cong) apply (rename_tac k) apply (simp add: wf_eq_minimal) apply (simp (no_asm) add: length_Suc_conv cong: conj_cong) apply clarify apply (rename_tac M m) apply (case_tac "? x xs. size xs = k & x#xs : M") prefer 2 apply (erule thin_rl) apply (erule thin_rl) apply blast apply (erule_tac x = "{a. ? xs. size xs = k & a#xs:M}" in allE) apply (erule impE) apply blast apply (thin_tac "? x xs. ?P x xs") apply clarify apply (rename_tac maxA xs) apply (erule_tac x = "{ys. size ys = size xs & maxA#ys : M}" in allE) apply (erule impE) apply blast apply clarify apply (thin_tac "m : M") apply (thin_tac "maxA#xs : M") apply (rule bexI) prefer 2 apply assumption apply clarify apply simp apply blast done lemma closed_listI: "closed S f \<Longrightarrow> closed (list n S) (map2 f)" apply (unfold closed_def) apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply simp done lemma Listn_sl_aux: includes semilat shows "semilat (Listn.sl n (A,r,f))" apply (unfold Listn.sl_def) apply (simp (no_asm) only: semilat_Def split_conv) apply (rule conjI) apply simp apply (rule conjI) apply (simp only: closedI closed_listI) apply (simp (no_asm) only: list_def) apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub) done lemma Listn_sl: "\<And>L. semilat L \<Longrightarrow> semilat (Listn.sl n L)" by(simp add: Listn_sl_aux split_tupled_all) lemma coalesce_in_err_list [rule_format]: "!xes. xes : list n (err A) \<longrightarrow> coalesce xes : err(list n A)" apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split) apply force done lemma lem: "\<And>x xs. x +_(op #) xs = x#xs" by (simp add: plussub_def) lemma coalesce_eq_OK1_D [rule_format]: "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> (!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> xs <=[r] zs))" apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) apply (force simp add: semilat_le_err_OK1) done lemma coalesce_eq_OK2_D [rule_format]: "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> (!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> ys <=[r] zs))" apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) apply (force simp add: semilat_le_err_OK2) done lemma lift2_le_ub: "\<lbrakk> semilat(err A, Err.le r, lift2 f); x:A; y:A; x +_f y = OK z; u:A; x <=_r u; y <=_r u \<rbrakk> \<Longrightarrow> z <=_r u" apply (unfold semilat_Def plussub_def err_def) apply (simp add: lift2_def) apply clarify apply (rotate_tac -3) apply (erule thin_rl) apply (erule thin_rl) apply force done lemma coalesce_eq_OK_ub_D [rule_format]: "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> (!zs us. coalesce (xs +[f] ys) = OK zs & xs <=[r] us & ys <=[r] us & us : list n A \<longrightarrow> zs <=[r] us))" apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def) apply clarify apply (rule conjI) apply (blast intro: lift2_le_ub) apply blast done lemma lift2_eq_ErrD: "\<lbrakk> x +_f y = Err; semilat(err A, Err.le r, lift2 f); x:A; y:A \<rbrakk> \<Longrightarrow> ~(? u:A. x <=_r u & y <=_r u)" by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1]) lemma coalesce_eq_Err_D [rule_format]: "\<lbrakk> semilat(err A, Err.le r, lift2 f) \<rbrakk> \<Longrightarrow> !xs. xs:list n A \<longrightarrow> (!ys. ys:list n A \<longrightarrow> coalesce (xs +[f] ys) = Err \<longrightarrow> ~(? zs:list n A. xs <=[r] zs & ys <=[r] zs))" apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) apply (blast dest: lift2_eq_ErrD) done lemma closed_err_lift2_conv: "closed (err A) (lift2 f) = (!x:A. !y:A. x +_f y : err A)" apply (unfold closed_def) apply (simp add: err_def) done lemma closed_map2_list [rule_format]: "closed (err A) (lift2 f) \<Longrightarrow> !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> map2 f xs ys : list n (err A))" apply (unfold map2_def) apply (induct n) apply simp apply clarify apply (simp add: in_list_Suc_iff) apply clarify apply (simp add: plussub_def closed_err_lift2_conv) done lemma closed_lift2_sup: "closed (err A) (lift2 f) \<Longrightarrow> closed (err (list n A)) (lift2 (sup f))" by (fastsimp simp add: closed_def plussub_def sup_def lift2_def coalesce_in_err_list closed_map2_list split: err.split) lemma err_semilat_sup: "err_semilat (A,r,f) \<Longrightarrow> err_semilat (list n A, Listn.le r, sup f)" apply (unfold Err.sl_def) apply (simp only: split_conv) apply (simp (no_asm) only: semilat_Def plussub_def) apply (simp (no_asm_simp) only: semilat.closedI closed_lift2_sup) apply (rule conjI) apply (drule semilat.orderI) apply simp apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def sup_def lift2_def) apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split) apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D) done lemma err_semilat_upto_esl: "\<And>L. err_semilat L \<Longrightarrow> err_semilat(upto_esl m L)" apply (unfold Listn.upto_esl_def) apply (simp (no_asm_simp) only: split_tupled_all) apply simp apply (fastsimp intro!: err_semilat_UnionI err_semilat_sup dest: lesub_list_impl_same_size simp add: plussub_def Listn.sup_def) done end
lemmas
[| set xs <= A; x : A |] ==> set (xs[i := x]) <= A
lemma unfold_lesub_list:
xs <=[r] ys == Listn.le r xs ys
lemma Nil_le_conv:
([] <=[r] ys) = (ys = [])
lemma Cons_notle_Nil:
¬ x # xs <=[r] []
lemma Cons_le_Cons:
(x # xs <=[r] y # ys) = (x <=_r y & xs <=[r] ys)
lemma Cons_less_Conss:
order r ==> (x # xs <[r] y # ys) = (x <_r y & xs <=[r] ys | x = y & xs <[r] ys)
lemma list_update_le_cong:
[| i < length xs; xs <=[r] ys; x <=_r y |] ==> xs[i := x] <=[r] ys[i := y]
lemma le_listD:
[| xs <=[r] ys; p < length xs |] ==> xs ! p <=_r ys ! p
lemma le_list_refl:
ALL x. x <=_r x ==> xs <=[r] xs
lemma le_list_trans:
[| order r; xs <=[r] ys; ys <=[r] zs |] ==> xs <=[r] zs
lemma le_list_antisym:
[| order r; xs <=[r] ys; ys <=[r] xs |] ==> xs = ys
lemma order_listI:
order r ==> order (Listn.le r)
lemma lesub_list_impl_same_size:
xs <=[r] ys ==> length ys = length xs
lemma lesssub_list_impl_same_size:
xs <[r] ys ==> length ys = length xs
lemma le_list_appendI:
[| a <=[r] b; c <=[r] d |] ==> a @ c <=[r] b @ d
lemma le_listI:
[| length a = length b; !!n. n < length a ==> a ! n <=_r b ! n |] ==> a <=[r] b
lemma listI:
[| length xs = n; set xs <= A |] ==> xs : list n A
lemma listE_length:
xs : list n A ==> length xs = n
lemma less_lengthI:
[| xs : list n A; p < n |] ==> p < length xs
lemma listE_set:
xs : list n A ==> set xs <= A
lemma list_0:
list 0 A = {[]}
lemma in_list_Suc_iff:
(xs : list (Suc n) A) = (EX y:A. EX ys:list n A. xs = y # ys)
lemma Cons_in_list_Suc:
(x # xs : list (Suc n) A) = (x : A & xs : list n A)
lemma list_not_empty:
EX a. a : A ==> EX xs. xs : list n A
lemma nth_in:
[| length xs = n; set xs <= A; i < n |] ==> xs ! i : A
lemma listE_nth_in:
[| xs : list n A; i < n |] ==> xs ! i : A
lemma listn_Cons_Suc:
[| l # xs : list n A; !!n'. [| n = Suc n'; l : A; xs : list n' A |] ==> P |] ==> P
lemma listn_appendE:
[| a @ b : list n A; !!n1 n2. [| n = n1 + n2; a : list n1 A; b : list n2 A |] ==> P |] ==> P
lemma listt_update_in_list:
[| xs : list n A; x : A |] ==> xs[i := x] : list n A
lemma plus_list_Nil:
[] +[f] xs = []
lemma plus_list_Cons:
x # xs +[f] ys = (case ys of [] => [] | y # ys => (x +_f y) # xs +[f] ys)
lemma length_plus_list:
length (xs +[f] ys) = min (length xs) (length ys)
lemma nth_plus_list:
[| length xs = n; length ys = n; i < n |] ==> (xs +[f] ys) ! i = xs ! i +_f ys ! i
lemma plus_list_ub1:
[| semilat (A, r, f); set xs <= A; set ys <= A; length xs = length ys |] ==> xs <=[r] xs +[f] ys
lemma plus_list_ub2:
[| semilat (A, r, f); set xs <= A; set ys <= A; length xs = length ys |] ==> ys <=[r] xs +[f] ys
lemma
semilat (A, r, f) ==> ALL xs ys zs. set xs <= A --> set ys <= A --> set zs <= A --> length xs = n & length ys = n --> xs <=[r] zs & ys <=[r] zs --> xs +[f] ys <=[r] zs
lemma list_update_incr:
[| semilat (A, r, f); x : A |] ==> set xs <= A --> (ALL i. i < length xs --> xs <=[r] xs[i := x +_f xs ! i])
lemma acc_le_listI:
[| order r; acc r |] ==> acc (Listn.le r)
lemma closed_listI:
closed S f ==> closed (list n S) (map2 f)
lemma
semilat (A, r, f) ==> semilat (Listn.sl n (A, r, f))
lemma Listn_sl:
semilat L ==> semilat (Listn.sl n L)
lemma coalesce_in_err_list:
xes : list n (err A) ==> coalesce xes : err (list n A)
lemma lem:
x +_op # xs = x # xs
lemma coalesce_eq_OK1_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs +[f] ys) = OK zs |] ==> xs <=[r] zs
lemma coalesce_eq_OK2_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs +[f] ys) = OK zs |] ==> ys <=[r] zs
lemma lift2_le_ub:
[| semilat (err A, Err.le r, lift2 f); x : A; y : A; x +_f y = OK z; u : A; x <=_r u; y <=_r u |] ==> z <=_r u
lemma coalesce_eq_OK_ub_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs +[f] ys) = OK zs & xs <=[r] us & ys <=[r] us & us : list n A |] ==> zs <=[r] us
lemma lift2_eq_ErrD:
[| x +_f y = Err; semilat (err A, Err.le r, lift2 f); x : A; y : A |] ==> ¬ (EX u:A. x <=_r u & y <=_r u)
lemma coalesce_eq_Err_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs +[f] ys) = Err |] ==> ¬ (EX zs:list n A. xs <=[r] zs & ys <=[r] zs)
lemma closed_err_lift2_conv:
closed (err A) (lift2 f) = (ALL x:A. ALL y:A. x +_f y : err A)
lemma closed_map2_list:
[| closed (err A) (lift2 f); xs : list n A; ys : list n A |] ==> map2 f xs ys : list n (err A)
lemma closed_lift2_sup:
closed (err A) (lift2 f) ==> closed (err (list n A)) (lift2 (Listn.sup f))
lemma err_semilat_sup:
err_semilat (A, r, f) ==> err_semilat (list n A, Listn.le r, Listn.sup f)
lemma err_semilat_upto_esl:
err_semilat L ==> err_semilat (upto_esl m L)