Up to index of Isabelle/HOL/objinit
theory Typing_Framework_JVM = Typing_Framework_err + JVMType + EffectMono + BVSpec:(* Title: HOL/MicroJava/BV/JVM.thy
ID: $Id: Typing_Framework_JVM.html,v 1.1 2002/11/28 14:12:09 kleing Exp $
Author: Tobias Nipkow, Gerwin Klein
Copyright 2000 TUM
*)
header {* \isaheader{The Typing Framework for the JVM}\label{sec:JVM} *}
theory Typing_Framework_JVM = Typing_Framework_err + JVMType + EffectMono + BVSpec:
constdefs
exec :: "jvm_prog \<Rightarrow> cname \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow>
state step_type"
"exec G C maxs rT ini et bs ==
err_step (size bs) (\<lambda>pc. app (bs!pc) G C pc maxs rT ini et) (\<lambda>pc. eff (bs!pc) G pc et)"
constdefs
opt_states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ((init_ty list × init_ty err list) × bool) option set"
"opt_states G maxs maxr \<equiv> opt ((\<Union>{list n (init_tys G) |n. n \<le> maxs} × list maxr (err (init_tys G))) × {True,False})"
locale JVM_sl =
fixes wf_mb and G and C and mxs and mxl
fixes pTs :: "ty list" and mn and bs and et and rT
fixes mxr and A and r and app and eff and step
defines [simp]: "mxr \<equiv> 1+length pTs+mxl"
defines [simp]: "A \<equiv> states G mxs mxr"
defines [simp]: "r \<equiv> JVMType.le G mxs mxr"
defines [simp]: "app \<equiv> \<lambda>pc. Effect.app (bs!pc) G C pc mxs rT (mn=init) et"
defines [simp]: "eff \<equiv> \<lambda>pc. Effect.eff (bs!pc) G pc et"
defines [simp]: "step \<equiv> exec G C mxs rT (mn=init) et bs"
locale (open) start_context = JVM_sl +
assumes wf: "wf_prog wf_mb G"
assumes C: "is_class G C"
assumes pTs: "set pTs \<subseteq> types G"
fixes this and first :: "state_bool option" and start
defines [simp]:
"this \<equiv> OK (if mn=init \<and> C \<noteq> Object then PartInit C else Init (Class C))"
defines [simp]:
"first \<equiv> Some (([],this#(map (OK\<circ>Init) pTs)@(replicate mxl Err)), C=Object)"
defines [simp]:
"start \<equiv> OK first#(replicate (size bs - 1) (OK None))"
section {* Executability of @{term check_bounded} *}
consts
list_all'_rec :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> bool"
primrec
"list_all'_rec P n [] = True"
"list_all'_rec P n (x#xs) = (P x n \<and> list_all'_rec P (Suc n) xs)"
constdefs
list_all' :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
"list_all' P xs \<equiv> list_all'_rec P 0 xs"
lemma list_all'_rec:
"\<And>n. list_all'_rec P n xs = (\<forall>p < size xs. P (xs!p) (p+n))"
apply (induct xs)
apply auto
apply (case_tac p)
apply auto
done
lemma list_all' [iff]:
"list_all' P xs = (\<forall>n < size xs. P (xs!n) n)"
by (unfold list_all'_def) (simp add: list_all'_rec)
lemma list_all_ball:
"list_all P xs = (\<forall>x \<in> set xs. P x)"
by (induct xs) auto
lemma [code]:
"check_bounded ins et =
(list_all' (\<lambda>i pc. list_all (\<lambda>pc'. pc' < length ins) (succs i pc)) ins \<and>
list_all (\<lambda>e. fst (snd (snd e)) < length ins) et)"
by (simp add: list_all_ball check_bounded_def)
section {* Connecting JVM and Framework *}
lemma check_bounded_is_bounded:
"check_bounded ins et \<Longrightarrow> bounded (\<lambda>pc. eff (ins!pc) G pc et) (length ins)"
apply (unfold bounded_def eff_def)
apply clarify
apply simp
apply (unfold check_bounded_def)
apply clarify
apply (erule disjE)
apply blast
apply (erule allE, erule impE, assumption)
apply (unfold xcpt_eff_def)
apply clarsimp
apply (drule xcpt_names_in_et)
apply clarify
apply (drule bspec, assumption)
apply simp
done
lemma special_ex_swap_lemma [iff]:
"(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)"
by blast
lemmas [iff del] = not_None_eq
lemmas [simp] = init_tys_def JType.esl_def
lemma replace_in_setI:
"\<And>n. ls \<in> list n A \<Longrightarrow> b \<in> A \<Longrightarrow> replace a b ls \<in> list n A"
by (induct ls) (auto simp add: replace_def)
theorem exec_pres_type:
"wf_prog wf_mb S \<Longrightarrow>
pres_type (exec S C maxs rT ini et bs) (size bs) (states S maxs maxr)"
apply (unfold exec_def JVM_states_unfold)
apply (rule pres_type_lift)
apply clarify
apply (case_tac s)
apply simp
apply (drule effNone)
apply simp
apply (simp add: eff_def eff_bool_def xcpt_eff_def norm_eff_def)
apply (case_tac "bs!p")
-- load
apply (clarsimp simp add: not_Err_eq)
apply (drule listE_nth_in, assumption)
apply fastsimp
-- store
apply (fastsimp simp add: not_None_eq)
-- litpush
apply clarsimp
apply (rule_tac x="Suc n" in exI)
apply (fastsimp simp add: not_None_eq typeof_empty_is_type)
-- new
apply clarsimp
apply (erule disjE)
apply (fastsimp intro: replace_in_setI)
apply clarsimp
apply (rule_tac x=1 in exI)
apply fastsimp
-- getfield
apply clarsimp
apply (erule disjE)
apply (fastsimp dest: field_fields fields_is_type)
apply (simp add: match_some_entry split: split_if_asm)
apply (rule_tac x=1 in exI)
apply fastsimp
-- putfield
apply clarsimp
apply (erule disjE)
apply fastsimp
apply (simp add: match_some_entry split: split_if_asm)
apply (rule_tac x=1 in exI)
apply fastsimp
-- checkcast
apply clarsimp
apply (erule disjE)
apply fastsimp
apply clarsimp
apply (rule_tac x=1 in exI)
apply fastsimp
-- invoke
apply (erule disjE)
apply (clarsimp simp add: Un_subset_iff)
apply (drule method_wf_mdecl, assumption+)
apply (clarsimp simp add: wf_mdecl_def wf_mhead_def)
apply fastsimp
apply clarsimp
apply (rule_tac x=1 in exI)
apply fastsimp
-- "@{text invoke_special}"
apply (erule disjE)
apply (clarsimp simp add: Un_subset_iff)
apply (drule method_wf_mdecl, assumption+)
apply (clarsimp simp add: wf_mdecl_def wf_mhead_def)
apply (fastsimp intro: replace_in_setI subcls_is_class)
apply clarsimp
apply (rule_tac x=1 in exI)
apply fastsimp
-- return
apply fastsimp
-- pop
apply fastsimp
-- dup
apply clarsimp
apply (rule_tac x="n'+2" in exI)
apply fastsimp
-- "@{text dup_x1}"
apply clarsimp
apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI)
apply fastsimp
-- "@{text dup_x2}"
apply clarsimp
apply (rule_tac x="Suc (Suc (Suc (Suc (length ST))))" in exI)
apply fastsimp
-- swap
apply fastsimp
-- iadd
apply fastsimp
-- goto
apply fastsimp
-- icmpeq
apply fastsimp
-- throw
apply clarsimp
apply (erule disjE)
apply fastsimp
apply clarsimp
apply (rule_tac x=1 in exI)
apply fastsimp
done
lemmas [iff] = not_None_eq
lemma sup_state_opt_unfold:
"sup_state_opt G \<equiv> Opt.le (Product.le (Product.le (Listn.le (init_le G)) (Listn.le (Err.le (init_le G)))) (op =))"
by (simp add: sup_state_opt_def sup_state_bool_def sup_state_def sup_loc_def sup_ty_opt_def)
lemma app_mono:
"app_mono (sup_state_opt G) (\<lambda>pc. app (bs!pc) G C pc maxs rT ini et) (length bs) (opt_states G maxs maxr)"
by (unfold app_mono_def lesub_def) (blast intro: EffectMono.app_mono)
lemma lesubstep_type_simple:
"a <=[Product.le (op =) r] b \<Longrightarrow> a <=|r| b"
apply (unfold lesubstep_type_def)
apply clarify
apply (simp add: set_conv_nth)
apply clarify
apply (drule le_listD, assumption)
apply (clarsimp simp add: lesub_def Product.le_def)
apply (rule exI)
apply (rule conjI)
apply (rule exI)
apply (rule conjI)
apply (rule sym)
apply assumption
apply assumption
apply assumption
done
lemma eff_mono:
"\<lbrakk>p < length bs; s <=_(sup_state_opt G) t; app (bs!p) G C p maxs rT ini et t\<rbrakk>
\<Longrightarrow> eff (bs!p) G p et s <=|sup_state_opt G| eff (bs!p) G p et t"
apply (unfold eff_def)
apply (rule lesubstep_type_simple)
apply (rule le_list_appendI)
apply (simp add: norm_eff_def)
apply (rule le_listI)
apply simp
apply simp
apply (simp add: lesub_def)
apply (case_tac s)
apply simp
apply (simp del: split_paired_All split_paired_Ex)
apply (elim exE conjE)
apply simp
apply (drule eff_bool_mono, assumption+)
apply (simp add: xcpt_eff_def)
apply (rule le_listI)
apply simp
apply simp
apply (simp add: lesub_def)
apply (case_tac s)
apply simp
apply simp
apply (case_tac t)
apply simp
apply (clarsimp simp add: sup_state_conv)
done
lemma order_sup_state_opt:
"wf_prog wf_mb G \<Longrightarrow> order (sup_state_opt G)"
by (unfold sup_state_opt_unfold) (blast intro: order_init eq_order)
theorem exec_mono:
"wf_prog wf_mb G \<Longrightarrow> bounded (exec G C maxs rT ini et bs) (size bs) \<Longrightarrow>
mono (JVMType.le G maxs maxr) (exec G C maxs rT ini et bs) (size bs)
(states G maxs maxr)"
apply (unfold exec_def JVM_le_unfold JVM_states_unfold)
apply (rule mono_lift)
apply (fold sup_state_opt_unfold opt_states_def)
apply (erule order_sup_state_opt)
apply (rule app_mono)
apply assumption
apply clarify
apply (rule eff_mono)
apply assumption+
done
theorem semilat_JVM_slI:
"wf_prog wf_mb G \<Longrightarrow> semilat (JVMType.sl G maxs maxr)"
apply (unfold JVMType.sl_def stk_esl_def reg_sl_def)
apply (rule semilat_opt)
apply (rule err_semilat_Product_esl)
apply (rule err_semilat_Product_esl)
apply (rule err_semilat_upto_esl)
apply (rule err_semilat_init, assumption)
apply (rule err_semilat_eslI)
apply (rule Listn_sl)
apply (rule err_semilat_init, assumption)
apply (rule bool_err_semilat)
done
lemma sl_triple_conv:
"JVMType.sl G maxs maxr ==
(states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)"
by (simp (no_asm) add: states_def JVMType.le_def JVMType.sup_def)
lemma map_id [rule_format]:
"(\<forall>n < length xs. f (g (xs!n)) = xs!n) \<longrightarrow> map f (map g xs) = xs"
by (induct xs, auto)
lemma is_type_pTs:
"\<lbrakk> wf_prog wf_mb G; (C,S,fs,mdecls) \<in> set G; ((mn,pTs),rT,code) \<in> set mdecls \<rbrakk>
\<Longrightarrow> set pTs \<subseteq> types G"
proof
assume "wf_prog wf_mb G"
"(C,S,fs,mdecls) \<in> set G"
"((mn,pTs),rT,code) \<in> set mdecls"
hence "wf_mdecl wf_mb G C ((mn,pTs),rT,code)"
by (unfold wf_prog_def wf_cdecl_def) auto
hence "\<forall>t \<in> set pTs. is_type G t"
by (unfold wf_mdecl_def wf_mhead_def) auto
moreover
fix t assume "t \<in> set pTs"
ultimately
have "is_type G t" by blast
thus "t \<in> types G" ..
qed
lemma (in JVM_sl) wt_method_def2:
"wt_method G C mn pTs rT mxs mxl bs et phi =
(bs \<noteq> [] \<and>
length phi = length bs \<and>
check_bounded bs et \<and>
check_types G mxs mxr (map OK phi) \<and>
wt_start G C mn pTs mxl phi \<and>
wt_app_eff (sup_state_opt G) app eff phi)"
by (auto simp add: wt_method_def wt_app_eff_def wt_instr_def lesub_def
dest: check_bounded_is_bounded boundedD)
lemma jvm_prog_lift:
assumes wf:
"wf_prog (\<lambda>G C bd. P G C bd) G"
assumes rule:
"\<And>wf_mb C mn pTs C rT maxs maxl b et bd.
wf_prog wf_mb G \<Longrightarrow>
method (G,C) (mn,pTs) = Some (C,rT,maxs,maxl,b,et) \<Longrightarrow>
is_class G C \<Longrightarrow>
set pTs \<subseteq> types G \<Longrightarrow>
bd = ((mn,pTs),rT,maxs,maxl,b,et) \<Longrightarrow>
P G C bd \<Longrightarrow>
Q G C bd"
shows
"wf_prog (\<lambda>G C bd. Q G C bd) G"
proof -
from wf show ?thesis
apply (unfold wf_prog_def wf_cdecl_def)
apply clarsimp
apply (drule bspec, assumption)
apply (unfold wf_mdecl_def)
apply clarsimp
apply (drule bspec, assumption)
apply clarsimp
apply (frule methd [OF wf], assumption+)
apply (frule is_type_pTs [OF wf], assumption+)
apply clarify
apply (drule rule [OF wf], assumption+)
apply (rule refl)
apply assumption+
done
qed
end
lemma list_all'_rec:
list_all'_rec P n xs = (ALL p. p < length xs --> P (xs ! p) (p + n))
lemma list_all':
list_all' P xs = (ALL n. n < length xs --> P (xs ! n) n)
lemma list_all_ball:
list_all P xs = Ball (set xs) P
lemma
check_bounded ins et = (list_all' (%i pc. list_all (%pc'. pc' < length ins) (succs i pc)) ins & list_all (%e. fst (snd (snd e)) < length ins) et)
lemma check_bounded_is_bounded:
check_bounded ins et ==> bounded (%pc. eff (ins ! pc) G pc et) (length ins)
lemma special_ex_swap_lemma:
(EX X. (EX n. X = A n & P n) & Q X) = (EX n. Q (A n) & P n)
lemmas
(x ~= None) = (EX y. x = Some y)
lemmas
init_tys G ==
{x. EX y:fst (JType.esl G). x = Init y} Un {x. EX c n. x = UnInit c n} Un
{x. EX c. x = PartInit c}
JType.esl G == (types G, subtype G, JType.sup G)
lemma replace_in_setI:
[| ls : list n A; b : A |] ==> replace a b ls : list n A
theorem exec_pres_type:
wf_prog wf_mb S
==> pres_type (Typing_Framework_JVM.exec S C maxs rT ini et bs) (length bs)
(states S maxs maxr)
lemmas
(x ~= None) = (EX y. x = Some y)
lemma sup_state_opt_unfold:
sup_state_opt G ==
Opt.le
(Product.le (Product.le (Listn.le (init_le G)) (Listn.le (Err.le (init_le G))))
op =)
lemma app_mono:
app_mono (sup_state_opt G) (%pc. app (bs ! pc) G C pc maxs rT ini et) (length bs) (opt_states G maxs maxr)
lemma lesubstep_type_simple:
a <=[Product.le op = r] b ==> a <=|r| b
lemma eff_mono:
[| p < length bs; s <=_(sup_state_opt G) t;
app (bs ! p) G C p maxs rT ini et t |]
==> eff (bs ! p) G p et s <=|sup_state_opt G| eff (bs ! p) G p et t
lemma order_sup_state_opt:
wf_prog wf_mb G ==> order (sup_state_opt G)
theorem exec_mono:
[| wf_prog wf_mb G;
bounded (Typing_Framework_JVM.exec G C maxs rT ini et bs) (length bs) |]
==> SemilatAlg.mono (JVMType.le G maxs maxr)
(Typing_Framework_JVM.exec G C maxs rT ini et bs) (length bs)
(states G maxs maxr)
theorem semilat_JVM_slI:
wf_prog wf_mb G ==> semilat (JVMType.sl G maxs maxr)
lemma sl_triple_conv:
JVMType.sl G maxs maxr == (states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)
lemma map_id:
(!!n. n < length xs ==> f (g (xs ! n)) = xs ! n) ==> map f (map g xs) = xs
lemma is_type_pTs:
[| wf_prog wf_mb G; (C, S, fs, mdecls) : set G;
((mn, pTs), rT, code) : set mdecls |]
==> set pTs <= types G
lemma wt_method_def2:
wt_method G C mn pTs rT mxs mxl bs et phi =
(bs ~= [] &
length phi = length bs &
check_bounded bs et &
check_types G mxs (1 + length pTs + mxl) (map OK phi) &
wt_start G C mn pTs mxl phi &
wt_app_eff (sup_state_opt G) (%pc. app (bs ! pc) G C pc mxs rT (mn = init) et)
(%pc. eff (bs ! pc) G pc et) phi)
lemma
[| wf_prog P G;
!!wf_mb C mn pTs Ca rT maxs maxl b et bd.
[| wf_prog wf_mb G;
method (G, Ca) (mn, pTs) = Some (Ca, rT, maxs, maxl, b, et);
is_class G Ca; set pTs <= types G;
bd = ((mn, pTs), rT, maxs, maxl, b, et); P G Ca bd |]
==> Q G Ca bd |]
==> wf_prog Q G