
Refinement in the formal verification of the seL4
microkernel

Gerwin Klein1,2, Thomas Sewell1, and Simon Winwood1,2

Abstract We present an overview of the different refinement frameworks used in the
L4.verified project to formally prove the functional correctness of the seL4 microker-
nel. The verification is conducted in the interactive theorem prover Isabelle/HOL and
proceeds in two large refinement steps: one proof between two monadic, functional
specifications in HOL and one proof between such a monadic specification and a C
program. To connect these proofs into one overall theorem, we map both refinement
statements into a common overall framework.

1 Introduction

seL4, the subject of this verification, is an operating system (OS) microkernel. The
OS kernel by definition is the part of the software that runs in the most privileged
mode of the hardware. As such it has full privileges to access and change all parts of
the system. Therefore, any defect in the OS kernel is potentially fatal to the operation
of the whole system, not just to isolated parts of it. One approach to reduce the
risk of such bugs is the microkernel approach: to reduce the privileged kernel code
to an absolute minimum. The remaining code base — 8,700 lines of C and 600
lines of assembly in the case of seL4 — is small enough to be amenable to formal
verification on the implementation level. The L4.verified project has produced such
an implementation proof for the C code of seL4. The overall proof comes to about
200,000 lines of proof script and roughly 10,000 intermediate lemmas.

The proof assumes correctness of compiler, assembly code and hardware. It also
assumes correct use of low-level hardware caches (memory caches and translation-
look-aside buffer) and correctness of the boot code (about 1,200 lines of the 8,700).

1NICTA, Sydney, Australia ·
2School of Computer Science and Engineering, UNSW, Sydney, Australia
{gerwin.klein|thomas.sewell|simon.winwood}@nicta.com.au

1

2 Gerwin Klein, Thomas Sewell, and Simon Winwood

It formally derives everything else. The verified version of the seL4 kernel runs on
the ARMv6 architecture and the Freescale i.MX31 platform.

This article gives an overview of the main proof technique and the proof frame-
work that was used in this verification project: refinement.

Abstract Specification

Executable Specification

High-Performance C Implementation

Haskell Prototype

Isabelle/HOL

Automatic Translation

Refinement Proof

2 Gerwin Klein, Thomas Sewell, and Simon Winwood

It formally derives everything else. The verified version of seL4 kernel runs on the
ARMv6 architecture and the Freescale i.MX31 platform.

This article gives an overview of the main proof technique and the proof frame-
work that was used in this verification project: refinement.

The proof is not done by step-

Abstract Specification

Executable Specification

High-Performance C Implementation

Haskell Prototype

Isabelle/HOL

Automatic Translation

Refinement Proof

for the second refinement step, the formal, machine-checked proof that the
high-performance C implementation of seL4 correctly implements its executable
specification.

With these two steps, we manage to isolate two aspects of the verification of
seL4. In the first refinement step, which we callRA, we dealt mostly with semantic
concepts: relationships between data structures and system-global conditions
for safe execution. We estimate that 80% of the effort in RA was spent on
such invariants. In the second refinement step, RC , we can avoid deep semantic
reasoning. The framework we present in this paper helped us to reduce our proof
effort and to re-use the properties shown in RA. The proof of RC concentrates
on the more syntactic issues that low-level C verification entails and on dealing
with the less savoury parts of C semantics. The first proof established that the
kernel design works, the second closes the gap to C. At the time of writing, the
C proof is not fully completed yet, but it has progressed substantially.

We begin the exposition with a running example, sketching the details of a
typical kernel function. We then explain how the components of the verification
framework fit together and briefly summarise relevant details of our earlier
work [5] on the monadic, executable specification and on our precise, foundational
C semantics and memory model [28,25,26]. In particular, we describe the issues
involved in converting the C implementation into Isabelle/HOL.

The main part of the paper shows the refinement framework with its funda-
mental definitions, rules, and automated tactics. We give evidence on how well
the framework performs by reporting on our experience so far in applying it to
the C verification of seL4.

2 Example

The seL4 kernel [10] delivers the following operating system kernel services: inter-
process communication, threads, virtual memory, access control, and interrupt
control. In this section we only present sample code to give a flavour of the
implementation and to provide a running example on which to illustrate the
verification framework.

Access control in seL4 is based on capabilities. A capability is a pointer with
access rights. A capability table entry (CTE) is a kernel data structure containing
a capability along with book-keeping information in the form of a doubly linked
list (the mdbNode field of the entry in Fig. 2). The cteMove operation, shown in
Fig. 2, moves an entry from srcSlot to destSlot. During the move, the capability
in the entry may be diminished in access rights. The argument newCap is this
possibly diminished capability, previously retrieved from srcSlot.

The first 6 lines in Fig. 2 initialise the destination entry and clear the source
entry; the remainder of the function updates the pointers in the linked list.
The left-hand side of the figure shows the monadic, executable specification in
Isabelle/HOL. The right-hand side shows the corresponding C code.

In this example, the C source code is structurally similar to its executable
specification. This similarity is not accidental: the executable specification aims

2

for the second refinement step, the formal, machine-checked proof that the
high-performance C implementation of seL4 correctly implements its executable
specification.

With these two steps, we manage to isolate two aspects of the verification of
seL4. In the first refinement step, which we callRA, we dealt mostly with semantic
concepts: relationships between data structures and system-global conditions
for safe execution. We estimate that 80% of the effort in RA was spent on
such invariants. In the second refinement step, RC , we can avoid deep semantic
reasoning. The framework we present in this paper helped us to reduce our proof
effort and to re-use the properties shown in RA. The proof of RC concentrates
on the more syntactic issues that low-level C verification entails and on dealing
with the less savoury parts of C semantics. The first proof established that the
kernel design works, the second closes the gap to C. At the time of writing, the
C proof is not fully completed yet, but it has progressed substantially.

We begin the exposition with a running example, sketching the details of a
typical kernel function. We then explain how the components of the verification
framework fit together and briefly summarise relevant details of our earlier
work [5] on the monadic, executable specification and on our precise, foundational
C semantics and memory model [28,25,26]. In particular, we describe the issues
involved in converting the C implementation into Isabelle/HOL.

The main part of the paper shows the refinement framework with its funda-
mental definitions, rules, and automated tactics. We give evidence on how well
the framework performs by reporting on our experience so far in applying it to
the C verification of seL4.

2 Example

The seL4 kernel [10] delivers the following operating system kernel services: inter-
process communication, threads, virtual memory, access control, and interrupt
control. In this section we only present sample code to give a flavour of the
implementation and to provide a running example on which to illustrate the
verification framework.

Access control in seL4 is based on capabilities. A capability is a pointer with
access rights. A capability table entry (CTE) is a kernel data structure containing
a capability along with book-keeping information in the form of a doubly linked
list (the mdbNode field of the entry in Fig. 2). The cteMove operation, shown in
Fig. 2, moves an entry from srcSlot to destSlot. During the move, the capability
in the entry may be diminished in access rights. The argument newCap is this
possibly diminished capability, previously retrieved from srcSlot.

The first 6 lines in Fig. 2 initialise the destination entry and clear the source
entry; the remainder of the function updates the pointers in the linked list.
The left-hand side of the figure shows the monadic, executable specification in
Isabelle/HOL. The right-hand side shows the corresponding C code.

In this example, the C source code is structurally similar to its executable
specification. This similarity is not accidental: the executable specification aims

2

Fig. 1 Refinement steps in L4.verified.

wise refinement, but proceeds in
two large refinement steps RA
and RC instead. The three main
specification artefacts in the proof
are shown in Fig. 1. The top level
specification is an abstract, op-
erational model in higher-order
logic of kernel behaviour. The in-
termediate specification is an ex-
ecutable, detailed model of ker-

nel behaviour that has been translated from a working prototype written in Haskell
into Isabelle/HOL. The bottom layer is the C program seL4 automatically parsed
into Isabelle/HOL.

On the surface, these two large refinement proofs use different formalisms and
connect different kinds of specification artefacts. Technical details on these two
proofs have appeared elsewhere [2, 16]. This article shows how they are put together
into a common, general refinement framework that allows us to connect the results
and extract the main overall theorem: the C code of seL4 correctly implements its
abstract specification.

The next section shows the overall data refinement framework. Sect. 3 sum-
marises the refinement proof RA and shows how it is mapped into the framework.
Sect. 4 does the same for the C implementation proof RC.

2 Data Refinement

The ultimate objective of our effort is to prove refinement [3] between an abstract
and a concrete process. We define a process as a triple containing an initialisation
function, which creates the process state with reference to some external state, a step
function which reacts to an event, transforming the state, and a finalisation function
which reconstructs the external state.

record process = Init :: ’external⇒ ’state set
Step :: ’event⇒ (’state × ’state) set
Fin :: ’state⇒ ’external

The execution of a process, starting from a initial external state, via a sequence of
input reactions results in a set of external states: (n.b. R ‘‘ S is the image of the set S
under the relation R)

steps δ s events ≡ foldl (λ states event. (δ event) ‘‘ states) s events
execution A s events ≡ (Fin A) ‘ (steps (Step A) (Init A s) events)

2 Gerwin Klein, Thomas Sewell, and Simon Winwood

It formally derives everything else. The verified version of seL4 kernel runs on the
ARMv6 architecture and the Freescale i.MX31 platform.

This article gives an overview of the main proof technique and the proof frame-
work that was used in this verification project: refinement.

The proof is not done by step-

Abstract Specification

Executable Specification

High-Performance C Implementation

Haskell Prototype

Isabelle/HOL

Automatic Translation

Refinement Proof

for the second refinement step, the formal, machine-checked proof that the
high-performance C implementation of seL4 correctly implements its executable
specification.

With these two steps, we manage to isolate two aspects of the verification of
seL4. In the first refinement step, which we callRA, we dealt mostly with semantic
concepts: relationships between data structures and system-global conditions
for safe execution. We estimate that 80% of the effort in RA was spent on
such invariants. In the second refinement step, RC , we can avoid deep semantic
reasoning. The framework we present in this paper helped us to reduce our proof
effort and to re-use the properties shown in RA. The proof of RC concentrates
on the more syntactic issues that low-level C verification entails and on dealing
with the less savoury parts of C semantics. The first proof established that the
kernel design works, the second closes the gap to C. At the time of writing, the
C proof is not fully completed yet, but it has progressed substantially.

We begin the exposition with a running example, sketching the details of a
typical kernel function. We then explain how the components of the verification
framework fit together and briefly summarise relevant details of our earlier
work [5] on the monadic, executable specification and on our precise, foundational
C semantics and memory model [28,25,26]. In particular, we describe the issues
involved in converting the C implementation into Isabelle/HOL.

The main part of the paper shows the refinement framework with its funda-
mental definitions, rules, and automated tactics. We give evidence on how well
the framework performs by reporting on our experience so far in applying it to
the C verification of seL4.

2 Example

The seL4 kernel [10] delivers the following operating system kernel services: inter-
process communication, threads, virtual memory, access control, and interrupt
control. In this section we only present sample code to give a flavour of the
implementation and to provide a running example on which to illustrate the
verification framework.

Access control in seL4 is based on capabilities. A capability is a pointer with
access rights. A capability table entry (CTE) is a kernel data structure containing
a capability along with book-keeping information in the form of a doubly linked
list (the mdbNode field of the entry in Fig. 2). The cteMove operation, shown in
Fig. 2, moves an entry from srcSlot to destSlot. During the move, the capability
in the entry may be diminished in access rights. The argument newCap is this
possibly diminished capability, previously retrieved from srcSlot.

The first 6 lines in Fig. 2 initialise the destination entry and clear the source
entry; the remainder of the function updates the pointers in the linked list.
The left-hand side of the figure shows the monadic, executable specification in
Isabelle/HOL. The right-hand side shows the corresponding C code.

In this example, the C source code is structurally similar to its executable
specification. This similarity is not accidental: the executable specification aims

2

for the second refinement step, the formal, machine-checked proof that the
high-performance C implementation of seL4 correctly implements its executable
specification.

With these two steps, we manage to isolate two aspects of the verification of
seL4. In the first refinement step, which we callRA, we dealt mostly with semantic
concepts: relationships between data structures and system-global conditions
for safe execution. We estimate that 80% of the effort in RA was spent on
such invariants. In the second refinement step, RC , we can avoid deep semantic
reasoning. The framework we present in this paper helped us to reduce our proof
effort and to re-use the properties shown in RA. The proof of RC concentrates
on the more syntactic issues that low-level C verification entails and on dealing
with the less savoury parts of C semantics. The first proof established that the
kernel design works, the second closes the gap to C. At the time of writing, the
C proof is not fully completed yet, but it has progressed substantially.

We begin the exposition with a running example, sketching the details of a
typical kernel function. We then explain how the components of the verification
framework fit together and briefly summarise relevant details of our earlier
work [5] on the monadic, executable specification and on our precise, foundational
C semantics and memory model [28,25,26]. In particular, we describe the issues
involved in converting the C implementation into Isabelle/HOL.

The main part of the paper shows the refinement framework with its funda-
mental definitions, rules, and automated tactics. We give evidence on how well
the framework performs by reporting on our experience so far in applying it to
the C verification of seL4.

2 Example

The seL4 kernel [10] delivers the following operating system kernel services: inter-
process communication, threads, virtual memory, access control, and interrupt
control. In this section we only present sample code to give a flavour of the
implementation and to provide a running example on which to illustrate the
verification framework.

Access control in seL4 is based on capabilities. A capability is a pointer with
access rights. A capability table entry (CTE) is a kernel data structure containing
a capability along with book-keeping information in the form of a doubly linked
list (the mdbNode field of the entry in Fig. 2). The cteMove operation, shown in
Fig. 2, moves an entry from srcSlot to destSlot. During the move, the capability
in the entry may be diminished in access rights. The argument newCap is this
possibly diminished capability, previously retrieved from srcSlot.

The first 6 lines in Fig. 2 initialise the destination entry and clear the source
entry; the remainder of the function updates the pointers in the linked list.
The left-hand side of the figure shows the monadic, executable specification in
Isabelle/HOL. The right-hand side shows the corresponding C code.

In this example, the C source code is structurally similar to its executable
specification. This similarity is not accidental: the executable specification aims

2

Fig. 1 Refinement steps in L4.verified.

wise refinement, but proceeds in
two large refinement steps RA
and RC instead. The three main
specification artefacts in the proof
are shown in Fig. 1. The top level
specification is an abstract, op-
erational model in higher-order
logic of kernel behaviour. The in-
termediate specification is an ex-
ecutable, detailed model of ker-

nel behaviour that has been translated from a working prototype written in Haskell
into Isabelle/HOL. The bottom layer is the C program seL4 automatically parsed
into Isabelle/HOL.

On the surface, these two large refinement proofs use different formalisms and
connect different kinds of specification artefacts. Technical details on these two
proofs have appeared elsewhere [2, 16]. This article shows how they are put together
into a common, general refinement framework that allows us to connect the results
and extract the main overall theorem: the C code of seL4 correctly implements its
abstract specification.

The next section shows the overall data refinement framework. Sect. 3 sum-
marises the refinement proof RA and shows how it is mapped into the framework.
Sect. 4 does the same for the C implementation proof RC.

2 Data Refinement

The ultimate objective of our effort is to prove refinement [3] between an abstract
and a concrete process. We define a process as a triple containing an initialisation
function, which creates the process state with reference to some external state, a step
function which reacts to an event, transforming the state, and a finalisation function
which reconstructs the external state.

record process = Init :: ’external⇒ ’state set
Step :: ’event⇒ (’state × ’state) set
Fin :: ’state⇒ ’external

The execution of a process, starting from a initial external state, via a sequence of
input reactions results in a set of external states: (n.b. R ‘‘ S is the image of the set S
under the relation R)

steps δ s events ≡ foldl (λ states event. (δ event) ‘‘ states) s events
execution A s events ≡ (Fin A) ‘ (steps (Step A) (Init A s) events)

Fig. 1 Refinement steps in L4.verified.

The proof is not done in a refinement calculus that transforms the program in
many small steps, but proceeds in two large refinement steps RA and RC instead.
The three main specification artefacts in the proof are shown in Fig. 1. The top level
specification of kernel behaviour is an abstract, operational model in higher-order
logic. We call it A in the following. The intermediate specification E is an executable,
detailed model of kernel behaviour that has been translated from a working prototype
written in Haskell into Isabelle/HOL. The bottom layer C is the C program seL4,
automatically parsed into Isabelle/HOL.

On the surface, these two large refinement proofs use different formalisms and
connect different kinds of specification artefacts. Technical details on these two
proofs have appeared elsewhere [4, 23, 17]. This article recalls some of these details
and shows how they are put together into a common, general refinement framework
that allows us to connect the results and extract the main overall theorem: the C code
of seL4 correctly implements its abstract specification.

The next section shows the overall data refinement framework. Sect. 3 gives some
example code on the monadic and C level. Sect. 4 summarises the refinement proof
RA and shows how it is mapped into the framework. Sect. 5 does the same for the C
implementation proof RC.

Refinement in the formal verification of the seL4 microkernel 3

2 Data Refinement

The ultimate objective of our effort is to prove refinement between an abstract and
a concrete process. Following de Roever and Engelhardt [6], we define a process
as a triple containing an initialisation function, which creates the process state with
reference to some external state, a step function which reacts to an event, transforming
the state, and a finalisation function which reconstructs the external state.

record process = Init :: ’external⇒ ’state set
Step :: ’event⇒ (’state × ’state) set
Fin :: ’state⇒ ’external

The idea is that the external state is the one observable on the outside, about which
one may formulate Hoare logic properties. A process may also contain hidden state to
implement its data structures. In the simple case, the full state space of a component
is just a pair of external and hidden states and the projection function Fin is just
the canoncial projection from pairs. With more complex processes, the projection
function that extracts the observable state may become more complex as well.

The execution of a process may be non-deterministic, starting from a initial
external state, resulting via a sequence of inputs in a set of external states:

steps δ s events ≡ foldl (λ states event. (δ event) ‘‘ states) s events
execution A s events ≡ (Fin A) ‘ (steps (Step A) (Init A s) events)

where R ‘‘ S and f ‘ R are the images of the set S under the relation R and the function
f respectively.

Process A is refined by C, if with the same initial state and input events, execution
of C yields a subset of the external states yielded by executing A:

A v C ≡ ∀s events. execution C s events ⊆ execution A s events

This is the classic notion of refinement as reducing non-determinism. Note that it
also includes data refinement: A and C may work on different internal state spaces;
they merely both need to project to the same external state space.

A well-known property of refinement is that it is equivalent with the preservation
of Hoare logic properties.

Lemma 1. A v C iff ∀P Q. A ` {|P|} events {|Q|} −→ C ` {|P|} events {|Q|}.

where A ` {|P|} events {|Q|} ≡ ∀s ∈ P. execution A s events ⊆ Q. The proof is by
unfolding of definitions and basic set reasoning.

This means that once refinement is shown, it is enough to prove a Hoare logic
property on the abstract level A for it to hold on the concrete level C. For this to
be useful, the external state must be rich enough to represent the properties one is
interested in.

4 Gerwin Klein, Thomas Sewell, and Simon Winwood

Abstract Operation

Concrete Operation

St
at

e
R

el
at

io
n

St
at

e
R

el
at

io
n

Fig. 2 Forward simulation.

2.1 Forward Simulation

Refinement is commonly proven by establishing forward simulation [6], of which
it is a consequence. To demonstrate forward simulation we define a relation, SR,
between the internal states of the two processes. We must show that the relation is
established by Init, is maintained if we advance the systems in parallel, and implies
equality of the final external states:

fw-sim SR C A ≡ (∀s. Init C s ⊆ SR ‘‘ Init A s)
∧ (∀event. Step C event O SR ⊆ SR O Step A event)
∧ (∀s s’. (s, s’) ∈ SR −→ Fin C s’ = Fin A s)

where T O S is the composition of relations S and T.
To prove forward simulation, it is often helpful to use additional facts about the

execution of abstract or concrete level. If this information is available in the form of
an invariant, it may be established separately and can then be easily integrated into
the refinement proof. An invariant is any property which is always established by Init
and preserved by Step. In the refinement proof, we may then assume it to be true at
the commencement of all steps and before finalisation.

invariant I M ≡ (∀s. Init M s ⊆ I) ∧ (∀event. Step C event ‘‘ I ⊆ I)
fw-simI SR C A Ic Ia ≡ (∀s. Init C s ⊆ SR ‘‘ Init A s)

∧ (∀event. Step C event O (SR ∩ (Ia × Ic)) ⊆ SR O Step A event)
∧ (∀s s’. (s, s’) ∈ SR ∧ s ∈ Ia ∧ s’ ∈ Ic −→ Fin C s’ = Fin A s)

The key theorems are, firstly, that forward simulation implies refinement and,
secondly, that forward simulation assuming invariants implies forward simulation in
general.

Lemma 2. fw-sim SR C A −→ A v C

Refinement in the formal verification of the seL4 microkernel 5

The proof is by unfolding definitions and induction on the event sequence in the
refinement statement, followed by relation reasoning to apply forward simulation in
the induction step.

Lemma 3. Forward simulation assuming invariants implies forward simulation if
the invariants are established separately.

fw-simI SR C A Ic Ia ∧ invariant Ia A ∧ invariant Ic C −→ fw-sim SR C A

This lemma is shown by basic relation and set reasoning after unfolding definitions.

2.2 Structure

The three processes we are interested in have a common structure in their Step opera-
tions. We model five kinds of events in our processes. The first two are transitions that
do not involve the kernel: user thread execution and idle thread execution. We model
the execution of user threads with unrestricted nondeterminism, allowing all possible
behaviours. We distinguish the idle thread as it may run in the kernel’s context and
thus must be better behaved. The next two kinds of events model the transition from
user mode to kernel mode when exceptions occur: user mode exceptions and idle
mode exceptions. The final event type is the one we are interested in: kernel execution.
This is the only part of the Step operation that differs between our processes.

Formally, we model this in a function global-automaton that takes the kernel
behaviour as a parameter and implements the above transitions generically. The
kernel transition is:

global-automaton kernel-call KernelTransition ≡
{ ((s, KernelMode, Some e), (s’, m, None)) |s s’ e m. (s,s’,m) ∈ kernel-call e}

The paramenter kernel-call is a relation between current and final kernel state, and
the next mode the machine is switched into (kernel mode, user mode, and idle
mode). The state space of the process is a triple of the kernel-observed machine state,
including memory and devices, a current mode and a current kernel entry event. The
latter is produced by the other transitions in the model. For instance, in idle mode,
only an interrupt event can be generated:

global-automaton kernel-call IdleEventTransition
{ ((s, IdleMode, None), (s, KernelMode, Some Interrupt)) |s. True }

From user mode, any kernel entry event e is possible. The transition from user to
kernel mode itself does not change the state, the context switch is modelled inside
the kernel transition that comes after, because it is modelled differently at each
abstraction level. The transition assumes no further conditions and does not depend
on the paramenter kernel-call.

global-automaton kernel-call UserEventTransition ≡
{ ((s, UserMode, None), (s, KernelMode, Some e)) |s e. True}

The other transitions are analogous.

6 Gerwin Klein, Thomas Sewell, and Simon Winwood

The definition of kernel execution may vary between our three processes, but
they share a common aspect. Each is implemented through a call to the top-level
kernel handler function from which a call graph proceeds in a structured language.
Explointing this structure is the key aspect of our approach.

2.3 Correspondence

Forward simulation, like most properties that can be expressed in a commuting
diagram, composes sequentially. This composition over successive Step actions
is important in the proof that forward simulation implies refinement. Sequential
composition is also useful in proving refinement within a single kernel execution
step.

The kernel execution bodies are, as discussed above, each written in a language
which affords substantial internal structure. To exploit similarities in this structure,
we define a new notion which we call correspondence. Correspondence is essentially
forward simulation, but defined not on state transformers but on the terms of the
languages in which the kernel execution bodies are defined. This leads us to define
two different correspondence predicates for RA and RC, which will be discussed in
the following sections. It is crucial that these predicates be defined in a manner that
allows the correspondence proofs to be composed across the syntactic composition
operators of the relevant languages.

3 Example

The seL4 kernel [8] provides the following operating system kernel services: inter-
process communication, threads, virtual memory, access control, and interrupt control.
In this section we present a typical function, cteMove, with which we will illustrate
the two proof frameworks for refinemnt. Fig. 3 shows the same function in the
monadic executable specification and in the C implementation. The first refinement
proof relates two monadic specifications; the second refinement proof relates the two
layers shown in the figure.

Access control in seL4 is based on capabilities. A capability contains an object
reference along with access rights. A capability table entry (CTE) is a kernel data
structure with two fields: a capability and an mdbNode. The latter is book-keeping
information and contains a pair of pointers which form a doubly linked list.

The cteMove operation, shown in Fig. 3, moves a capability table entry from src
to dest.

The first 6 lines in Fig. 3 initialise the destination entry and clear the source entry;
the remainder of the function updates the pointers in the doubly linked list. During
the move, the capability in the entry may be diminished in access rights. Thus, the

Refinement in the formal verification of the seL4 microkernel 7

cteMove cap src dest ≡ void cteMove (cap_t newCap,
do cte_t *srcSlot, cte_t *destSlot){

cte← getCTE src; mdb_node_t mdb; uint32_t prev_ptr, next_ptr;
mdb← return (cteMDBNode cte); mdb = srcSlot->cteMDBNode;
updateCap dest cap; destSlot->cap = newCap;
updateCap src NullCap; srcSlot->cap = cap_null_cap_new();
updateMDB dest (const mdb); destSlot->cteMDBNode = mdb;
updateMDB src (const nullMDBNode); srcSlot->cteMDBNode = nullMDBNode;

prev_ptr = mdb_node_get_mdbPrev(mdb);
updateMDB if(prev_ptr) mdb_node_ptr_set_mdbNext(
(mdbPrev mdb) &CTE_PTR(prev_ptr)->cteMDBNode,
(λm. m (|mdbNext := dest |)); CTE_REF(destSlot));

next_ptr = mdb_node_get_mdbNext(mdb);
updateMDB if(next_ptr) mdb_node_ptr_set_mdbPrev(
(mdbNext mdb) &CTE_PTR(next_ptr)->cteMDBNode,
(λm. m (|mdbPrev := dest |)) CTE_REF(destSlot));

od }

Fig. 3 cteMove: executable specification and C implementation

argument cap is this possibly diminished capability, previously retrieved from the
entry at src.

In this example, the C source code is structurally similar to the executable specifi-
cation. This similarity is not accidental: the executable specification describes the
low-level design with a high degree of detail. Most of the kernel functions exhibit this
property. It is also true, to a lesser degree, for the refinement between two monadic
specifications. Even so, the implementation here makes a small optimisation: in the
specification, updateMDB always checks that the given pointer is not NULL. In the
implementation this check is done for prev ptr and next ptr – which may be
NULL – but omitted for srcSlot and destSlot. In verifying cteMove we will
have to prove that these checks are not required.

4 Monadic Refinement

4.1 Nondeterministic State Monads

The abstract and executable specifications over which RA is proved are written
in a monadic style inspired by Haskell. The type constructor (’a, ’s) nd-monad
is a nondeterministic state monad representing computations with a state type ’s
and a return value type ’a. Return values can be injected into the monad using the
return :: ’a⇒ (’a, ’s) nd-monad operation. The composition operator bind :: (’a,

’s) nd-monad⇒ (’a⇒ (’b, ’s) nd-monad)⇒ (’b, ’s) nd-monad performs the
first operation and makes the return value available to the second operation. These
canonical operators form a monad over (’a, ’s) nd-monad and satisfy the usual
monadic laws. More details are given elsewhere [4]. The ubiquitous do . . . od syntax
seen in Sect. 3 is syntactic sugar for a sequence of operations composed using bind.

8 Gerwin Klein, Thomas Sewell, and Simon Winwood

The type (’a, ’s) nd-monad is isomorphic to ’s⇒ (’a × ’s) set × bool. This
can be thought of as a nonderministic state transformer (mapping from states to sets
of states) extended with a return value (required to form a monad) and a boolean
failure flag. The flag is set by the fail :: (’a, ’s) nd-monad operation to indicate
unrecoverable errors in a manner that is always propagated and not confused by
nondeterminism. The destructors mResults and mFailed access, respectively, the
set of outcomes and the failure flag of a monadic operation evaluated at a state.

Exception handling is introduced by using a return value in the sum type. An
alternative composition operator op >>=E :: (’e + ’a, ’s) nd-monad⇒ (’a⇒
(’e + ’b, ’s) nd-monad) ⇒ (’e + ’b, ’s) nd-monad inspects the return value,
executing the subsequent operation for normal (right) return values and skipping it
for exceptional (left) ones. There is an alternative return operator returnOk and these
form an alternative monad. Exceptions are thrown with throwError and caught with
catch.

We define a Hoare triple denoted {|P|} a {|R|} on a monadic operator a, precondition
P and postcondition Q. We have a verification condition generator (VCG) for such
hoare triples, which are used extensively both to establish invariants and to make use
of them in correspondence proofs.

4.2 Correspondence

The components of our monadic specifications are similar to the nondeterministic
state transformers on which forward simulation is defined. To extend to a correspon-
dence framework we must determine how to handle the return values and failure
flags. This is accomplished by the corres predicate. It captures forward simulation
between a component monadic computation C, and its abstract counterpart A, with
SR instantiated to our standard state relation state-relation. It takes three additional
parameters: R is a predicate which will relate abstract and concrete return values, and
the preconditions P and P’ restrict the input states, allowing use of information such
as global invariants:

corres R P P’ A C ≡ ∀(s, s’)∈ state-relation. P s ∧ P’ s’ −→
(∀(r’, t’)∈mResults (C s’). ∃(r, t)∈mResults (A s). (t, t’) ∈ state-relation ∧ R r r’)
∧ (¬mFailed (C s’))

Note that the outcome of the monadic computation is a pair of result and failure
flag. The last conjunct of the corres statement mandates non-failure for C.

The key property of corres is that it decomposes over the bind constructor through
the CORRES-SPLIT rule.

CORRES-SPLIT:
corres R’ P P’ A C

∀r r’. R’ r r’ −→ corres R (S r) (S’ r’) (B r) (D r’) {|Q|} A {|S|} {|Q’|} C {|S’|}
corres R (P and Q) (P’ and Q’) (A >>= B) (C >>= D)

This splitting rule decomposes the problem into four subproblems. The first
two are corres predicates relating the subcomputations. Two Hoare triples are also

Refinement in the formal verification of the seL4 microkernel 9

required. This is because the input states of the subcomputations appearing in the
second subproblem are intermediate states, not input states, of the original problem.
Any preconditions assumed in solving the second subproblem must be shown to
hold at the intermediate states by proving a Hoare triple over the partial computation.
Use of Hoare triples to demonstrate intermediate conditions is both a strength and a
weakness of this approach. In some cases the result is repetition of existing invariant
proofs. However, in the majority of cases this approach makes the flexibility and
automation of the VCG available in demonstrating preconditions that are useful as
assumptions in proofs of the corres predicate.

The decision to mandate non-failure for concrete elements and not abstract ones
is pragmatic. Proving non-failure on either system could be done independently;
however, the preconditions needed are usually the same as in corres proofs and it
is convenient to solve two problems simultaneously. Unfortunately we cannot so
easily prove abstract non-failure. Because the concrete specification may be more
deterministic than the abstract one, there is no guarantee we will examine all possible
failure paths. In particular, if a conjunct mandating abstract non-failure were added
to the definition of corres the splitting rule above would not be provable.

Similar splitting rules exist for other common monadic constructs including bindE,
catch and conditional expressions. There are terminating rules for the elementary
monadic functions, for example:

CORRES-RETURN:
R a b

corres R > > (return a) (return b)

The corres predicate also has a weakening rule, similar to the Hoare Logic.

CORRES-PRECOND-WEAKEN:
corres R Q Q’ A C ∀s. P s −→ Q s ∀s. P’ s −→ Q’ s

corres R P P’ A C

Proofs of the corres property take a common form: first the definitions of the
terms under analysis are unfolded and the CORRES-PRECOND-WEAKEN rule is
applied. As with the VCG, this allows the syntactic construction of a precondition
to suit the proof. The various splitting rules are used to decompose the problem; in
some cases with carefully chosen return value relations. Existing results are then
used to solve the component corres problems. Some of these existing results, such
as CORRES-RETURN, require compatibility properties on their parameters. These
are typically established using information from previous return value relations.
The VCG eliminates the Hoare triples, bringing preconditions assumed in corres
properties at later points back to preconditions on the starting states. Finally, as in
Dijkstra’s postcondition propagation [7], the precondition used must be proved to be
a consequence of the one that was originally assumed.

10 Gerwin Klein, Thomas Sewell, and Simon Winwood

4.3 Mapping to processes

To prove RA we must connect the corres framework described above to the forward
simulation property we wish to establish. The Step actions of the processes we are
interested in are equal for all events other than kernel executions, and simulation is
trivial to prove for equal operations. In the abstract process A , kernel execution is
defined in the monadic function call-kernel. The semantics of the whole abstract
process A are then derived by using call-kernel in the call to global-automaton.
The context switch is modelled by explicitly changing all user accessible parts,
for instance the registers of the current thread, fully nondeterministically. The se-
mantics of the intermediate process for the executable specification E are derived
similarly from a monadic operation callKernel. These two top-level operators satisfy
a correspondence theorem KERNEL-CORRES:

∀event. corres (λ rv rv’. True) invs invs’ (call-kernel event) (callKernel event)

The required forward simulation property for kernel execution (assuming the
system invariants) is implied by this correspondence rule. Invariant preservation for
the system invariants follows similarly from Hoare triples proved over the top-level
monadic operations:

∀event. {|invs|} call-kernel event {|λ -. invs|}
∀event. {|invs’|} callKernel event {|λ -. invs’|}

From these facts we may thus conclude that RA holds:

Theorem 1. The executable specification refines the abstract one.

A v E

5 C Refinement

In this section we describe our infrastructure for parsing C into Isabelle/HOL and for
reasoning about the result.

The seL4 kernel is implemented almost entirely in C99 [15]. Direct hardware
accesses are encapsulated in machine interface functions, some of which are im-
plemented in ARMv6 assembly. In the verification, we axiomatise the assembly
functions using Hoare triples.

Fig. 4 gives an overview of the components involved in importing the kernel into
Isabelle/HOL. The right-hand side shows our instantiation of SIMPL [18], a generic,
imperative language inside Isabelle. The SIMPL framework provides a program
representation, a semantics, and a VCG. This language is generic in its expressions
and state space. We instantiate both components to form C-SIMPL, with a precise C
memory model and C expressions, generated by a parser. The left-hand side of Fig. 4
shows this process: the parser takes a C program and produces a C-SIMPL program.

Refinement in the formal verification of the seL4 microkernel 11

Operational Semantics

Isabelle/HOL

VCG

SIMPL

generic imperative framework

C expressions, guards

C memory model

C-SIMPL
C Code

Parser

C-SIMPL code

Fig. 4 C language framework.

SIMPL provides a data type and semantics for statement forms; expressions are
shallowly embedded. Along with the usual constructors for conditional statements
and iteration, SIMPL includes statements of the form Guard F P c which raises the
fault F if the condition P is false and executes c otherwise.

Program states in SIMPL are represented by Isabelle records containing a field for
each local variable in the program, and a field globals containing all global variables
and the heap. Variables are then simply functions on the state.

SIMPL semantics are represented by judgements of the form Γ` 〈c,x〉 ⇒ x’ which
means that executing statement c in state x terminates and results in state x’; the
parameter Γ maps function names to function bodies. These states include both the
program state and control flow information, including that for abruptly terminating
THROW statements used to implement the C statements return, break, and
continue.

The SIMPL environment also provides a VCG for partial correctness triples;
Hoare-triples are represented by judgements of the form Γ`/F P c C,A, where P is
the precondition, C is the postcondition for normal termination, A is the postcondition
for abrupt termination, and F is the set of ignored faults. If F is UNIV, the universal
set, then all Guard statements are effectively ignored. Both A and F may be omitted
if empty.

Our C subset allows type-unsafe operations including casts. To achieve this
soundly, the underlying heap model is a function from addresses to bytes. This
allows, for example, the C function memset, which sets each byte in a region of the
heap to a given value. We generally use a more abstract interface to this heap: we use
additional typing information to lift the heap into functions from typed pointers to
Isabelle terms; see Tuch et al [21, 20] for more detail.

The C parser takes C source files and generates the corresponding C-SIMPL terms,
along with Hoare-triples describing the set of variables mutated by the functions.
Although our C subset does not include union types, we have a tool which generates

12 Gerwin Klein, Thomas Sewell, and Simon Winwood

data types and manipulation functions which implement tagged unions via C struc-
tures and casts [3]. The tool also generates proofs of Hoare-triples describing the
operations.

5.1 Refinement Calculus for C

Refinement phase RC involves proving refinement between the executable spec-
ification and the C implementation. Specifically, this means showing that the C
kernel entry points for interrupts, page faults, exceptions, and system calls refine the
executable specification’s top-level function callKernel.

As with RA, we introduce a new correspondence notion that implies forward
simulation. We again aim to divide the proof along the syntactic structure of both
programs as far as possible, and then prove the resulting subgoals semantically.

In the following, we first give our definition of correspondence, followed by a
discussion of the use of the VCG. We then describe techniques for reusing proofs
from RA to solve proof obligations from the implementation. Next, we present
our approach for handling operations with no corresponding analogue. Finally, we
describe our splitting approach and sketch the proof of the example.

5.2 The correspondence statement

(s', rv)
Monadic Operation

C Operation

P

P'

S S

t ∈

s ∈

 t' xf t'

r

Fig. 5 Correspondence.

As with the correspondence statement for RA, we deal with state preconditions
and return values by including guards on the states and a return value relation in the
RC correspondence statement. In addition, we include an extra parameter used for

Refinement in the formal verification of the seL4 microkernel 13

dealing with early returns and breaks from loops, namely a list of statements called a
handler stack.

We thus extend the semantics to lists of statements, writing Γ
 〈c·hs, s〉 ⇒ x’.
The statement sequence hs is a handler stack; it collects the CATCH handlers which
surround usages of the statements return, continue, and break. If c terminates
abruptly, each statement in hs is executed in sequence until one terminates normally.

Relating the return values of functions is dealt with by annotating the corre-
spondence statement with a return value relation r. Although evaluating a monadic
operation results in both a new state and a return value, functions in C-SIMPL return
values by updating a function-specific local variable; because local variables are
fields in the state record, this is a function from the state. We thus annotate the
correspondence statement with an extraction function xf, a function which extracts
the return value from a program state.

The correspondence statement is illustrated in Fig. 5 and defined below

ccorres r xf P P’ hs a c ≡
∀(s, t)∈S . ∀ t’. s ∈ P ∧ t ∈ P’ ∧ ¬mFailed (a s) ∧ Γ
 〈c·hs, t〉 ⇒ t’
−→ ∃(s’,rv)∈mResults (a s).

∃ t’N . t’ = Normal t’N ∧ (s’, t’N) ∈ S ∧ r rv (xf t’N)

The definition can be read as follows: given related states s and t with the precondi-
tions P and P’ respectively, if the abstract specification a does not fail when evaluated
at state s, and the concrete statement c evaluates under handler stack hs in extended
state t to extended state t’, then the following must hold:

1. evaluating a at state s returns some value rv and new abstract state s’;
2. the result of the evaluation of c is some normal (non-abrupt) state Normal t’N
3. states s’ and t’N are related by the state relation S ; and
4. values rv and xf t’N — the extraction function applied to the final state of c — are

related by r, the given return value relation.

Note that a is non-deterministic: we may pick any suitable rv and s’. As mentioned
in Sect. 4.2, the proof of RA entails that the executable specification does not fail.
Thus, in the definition of ccorres, we may assume ¬ mFailed (a s). In practice, this
means assertions and other conditions for (non-)failure in the executable specification
become known facts in the proof. Of course, these facts are only free because we
have already proven them in RA.

5.3 Proving correspondence via the VCG

Data refinement predicates can, in general [6], be rephrased and solved as Hoare
triples. We do this in our framework by using the VCG after applying the following
rule:

14 Gerwin Klein, Thomas Sewell, and Simon Winwood

∀s. Γ`{t | s ∈ P ∧ t ∈ P’ ∧ (s, t) ∈ S }
c

{t’ | ∃(rv, s’)∈mResults (a s). (s’, t’) ∈ S ∧ r rv (xf t’)}
ccorres r xf P P’ hs a c

In essence, this rule states that to show correspondence between a and c, for a
given initial specification state s, it is sufficient to show that executing c results in
normal termination where the final state is related to the result of evaluating a at s.
The VCG precondition can assume that the initial states are related and satisfy the
correspondence preconditions.

Use of this rule in verifying correspondence is limited by two factors. Firstly, the
verification conditions produced by the VCG may be excessively large or complex.
Our experience is that the output of a VCG step usually contains a separate term for
every possible path through the target code, and that the complexity of these terms
tends to increase with the path length. Secondly, the specification return value and
result state are existential, and thus outside the range of our extensive automatic
support for showing universal properties of specification fragments. Fully expanding
the specification is always possible, and in the case of deterministic operations will
yield a single state/return value pair, but the resulting term structure may also be
large.

5.4 Splitting

As with RA, we prove correspondence by splitting the proof into corresponding
program lines. Splitting allows us to take advantage of structural similarity by
considering each match in isolation; formally, given the specification fragment do rv
← a; b rv od and the implementation fragment c; d, splitting entails proving a first
correspondence between a and c and a second between b and d.

In the case where we can prove that c terminates abruptly, we discard d. Otherwise,
the following rule is used:

ccorres r’ xf’ P P’ hs a c
∀v. d’ v ∼ d[v/xf’] ∀rv rv’. r’ rv rv’ −→ ccorres r xf (Q rv) (Q’ rv rv’) hs (b rv) (d’ rv’)

{|R|} a {|Q|} Γ`/U R’ c {s | ∀rv. r’ rv (xf’ s) −→ s ∈ Q’ rv (xf’ s)}

ccorres r xf (P ∩ R) (P’ ∩ R’) hs (a >>= b) (c; d)

In the second correspondence premise, d’ is the result of lifting xf’ in d; this
enables the proof of the second correspondence to use the result relation from the
first correspondence. To calculate the final preconditions, the rule includes VCG
premises to move the preconditions from the second correspondence across a and c.
In the C-SIMPL VCG obligation, we may ignore any guard faults as their absence
is implied by the first premise. In fact, in most cases the C-SIMPL VCG step can
be omitted altogether, because the post condition collapses to the universal set after
simplifications.

We have developed a tactic which assists in splitting: C-SIMPL’s encoding of
function calls and struct member updates requires multiple specialised rules. The

Refinement in the formal verification of the seL4 microkernel 15

tactic symbolically executes and moves any guards if required, determines the cor-
rect splitting rule to use, instantiates the extraction function, and lifts the second
correspondence premise.

5.5 Mapping to processes

We map the C kernel into a process by lifting the operational semantics of the kernel
C code into a non-deterministic monad:

exec-C Γ c ≡ λ s. ({()} × {s’ | Γ` 〈c,Normal s〉 ⇒ Normal s’}, False)

that is, for a given statement c we construct a function from an initial state s into
the set of states resulting from evaluating c at s. We define the return value of this
execution as the unit. We set the failure flag to False and require a successful Normal
result from C.

We then construct a function callKernel-C, parametrised by the input event, which
simulates the hardware exception dispatch mechanism. The function examines the
argument and dispatches the event to the corresponding kernel entry point. Finally,
we form the process ADT-C by instantiating the global automaton with this step
function.

We again establish a correspondence result between the kernel entry points, this
time between callKernel in E and callKernel-C in C. This time, we did not need to
prove additional invariants about the concrete level (the C program). The framework
presented above enabled us to shift all such reasoning the level of the executable
specification E .

Theorem 2. The translated C code refines its executable specification.

E v C

6 Main theorem

Putting the two theorems from the previous sections together, we arrive via transitivity
of refinement at the main functional correctness theorem.

Theorem 3. A v C

7 Related Work

We briefly summarise related work on OS verification; a comprehensive overview is
provided by Klein [16].

16 Gerwin Klein, Thomas Sewell, and Simon Winwood

Early work on OS verification includes PSOS [9] and UCLA Secure Unix [22].
Later, KIT [2] describes verification of process isolation properties down to object
code level, but for an idealised kernel much simpler than modern microkernels.

The VFiasco project [13] and later the Robin project [19] attempted to verify C++
kernel implementations. They created a precise model of a large, relevant part of
C++, but did not verify substantial parts of the kernel.

Heitmeyer et al. [12] report on the verification and Common Criteria certification
of a “software-based embedded device” featuring a small (3,000 LOC) separation
kernel. Similarly, Green Hills’ Integrity kernel [11] recently underwent formal verifi-
cation during a Common Criteria EAL6+ certification [10]. The Separation Kernel
Protection Profile [14] of Common Criteria demands data separation only rather than
functional correctness.

A closely related project is Verisoft [1], which is attempting to verify not only
the OS, but a whole software stack from verified hardware up to verified application
programs. This includes a formally verified, non-optimising compiler for a Pascal-like
implementation language. While Verisoft accepts a simplified (but verified) hardware
platform and two orders of magnitude slow-down for the simplified VAMOS kernel,
we deal with real C and standard tool chains on ARMv6, and have aimed for a
commercially deployable, realistic microkernel. A successor project, Verisoft XT,
is aiming to verify the functional correctness of the Microsoft Hypervisor, which
contains concurrency and is substantially larger than seL4. While initial progress
has been made on this verification [5], it is unclear at this stage if the goal will be
reached.

8 Conclusion

We have presented the different refinement techniques used in the verification of the
seL4 microkernel. We have given an overview of the overall unifying framework, of
the refinement calculus used for stateful, monadic specification, of the refinement
calculus for imperative programs, and we have shown how these are put together into
the final theorem.

The two frameworks presented here have withstood the test of large-scale ap-
plication to high-performance C code in the Isabelle/HOL verification of the seL4
microkernel. Proving functional correctness for real-world application down to the
implementation level is possible and feasible.

Acknowledgements

We thank the other current and former members of the L4.verified and seL4 teams:
David Cock, Tim Bourke, June Andronick, Michael Norrish, Jia Meng, Catherine
Menon, Jeremy Dawson, Harvey Tuch, Rafal Kolanski, David Tsai, Andrew Boyton,

Refinement in the formal verification of the seL4 microkernel 17

Kai Engelhardt, Kevin Elphinstone, Philip Derrin and Dhammika Elkaduwe for their
contributions to this verification.

NICTA is funded by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

References

1. Eyad Alkassar, Mark Hillebrand, Dirk Leinenbach, Norbert Schirmer, Artem Starostin, and
Alexandra Tsyban. Balancing the load — leveraging a semantics stack for systems verification.
JAR, 42(2–4), 2009.

2. William R. Bevier. Kit: A study in operating system verification. IEEE Transactions on
Software Engineering, 15(11):1382–1396, 1989.

3. David Cock. Bitfields and tagged unions in C: Verification through automatic generation. In
Bernhard Beckert and Gerwin Klein, editors, VERIFY’08, volume 372 of CEUR Workshop
Proceedings, pages 44–55, Aug 2008.

4. David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state monads and
scalable refinement. In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, 21st
TPHOLs, volume 5170 of LNCS, pages 167–182. Springer, Aug 2008.

5. Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for verifying concurrent
C. In Theorem Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of Lecture Notes
in Computer Science, pages 23–42, Munich, Germany, 2009. Springer.

6. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison. Number 47 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

7. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, 1975.

8. Kevin Elphinstone, Gerwin Klein, Philip Derrin, Timothy Roscoe, and Gernot Heiser. Towards
a practical, verified kernel. In Proc. 11th Workshop on Hot Topics in Operating Systems, pages
117–122, San Diego, CA, USA, May 2007.

9. Richard J. Feiertag and Peter G. Neumann. The foundations of a provably secure operating
system (PSOS). In AFIPS Conf. Proc., 1979National Comp. Conf., pages 329–334, New York,
NY, USA, June 1979.

10. Green Hills Software, Inc. INTEGRITY-178B separation kernel security target version 1.0.
http://www.niap-ccevs.org/cc-scheme/st/st_vid10119-st.pdf, 2008.

11. Greenhills Software, Inc. Integrity real-time operating system. http://www.ghs.com/
products/rtos/integrity.html, 2008.

12. Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John McLean. Formal
specification and verification of data separation in a separation kernel for an embedded system.
In CCS ’06: Proc. 13th Conf. on Computer and Communications Security, pages 346–355.
ACM, 2006.

13. Michael Hohmuth and Hendrik Tews. The VFiasco approach for a verified operating system.
In 2nd PLOS, Jul 2005.

14. Information Assurance Directorate. U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness, Jun 2007. Version 1.03. http:
//www.niap-ccevs.org/cc-scheme/pp/pp.cfm/id/pp_skpp_hr_v1.03/.

15. ISO/IEC. Programming languages — C. Technical Report 9899:TC2, ISO/IEC
JTC1/SC22/WG14, May 2005.

16. Gerwin Klein. Operating system verification — an overview. Sādhanā, 34(1):27–69, Feb 2009.

http://www.niap-ccevs.org/cc-scheme/st/st_vid10119-st.pdf
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.niap-ccevs.org/cc-scheme/pp/pp.cfm/id/pp_skpp_hr_v1.03/
http://www.niap-ccevs.org/cc-scheme/pp/pp.cfm/id/pp_skpp_hr_v1.03/

18 Gerwin Klein, Thomas Sewell, and Simon Winwood

17. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In Proc. 22th
SOSP, pages 207–220, Big Sky, MT, USA, October 2009. ACM.

18. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,
Technische Universität München, 2006.

19. Hendrik Tews, Tjark Weber, and Marcus Völp. A formal model of memory peculiarities for
the verification of low-level operating-system code. In Ralf Huuck, Gerwin Klein, and Bastian
Schlich, editors, Proc. 3rd Int. WS on Systems Software Verification (SSV’08), volume 217 of
ENTCS, pages 79–96. Elsevier, Feb 2008.

20. Harvey Tuch. Formal verification of C systems code: Structured types, separation logic and
theorem proving. JAR, special issue on Operating System Verification, 42(2–4):125–187, 2009.

21. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In Martin
Hofmann and Matthias Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 97–108, Nice, France, 2007. ACM.

22. Bruce Walker, Richard Kemmerer, and Gerald Popek. Specification and verification of the
UCLA Unix security kernel. Commun. ACM, 23(2):118–131, 1980.

23. Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock, and Michael
Norrish. Mind the gap: A verification framework for low-level C. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Proc. TPHOls’09, volume 5674 of
LNCS, pages 500–515, Munich, Germany, August 2009. Springer.

