Up to index of Isabelle/HOL/arrays
theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM:(* Title: HOL/MicroJava/BV/LBVJVM.thy ID: $Id: LBVJVM.html,v 1.1 2002/11/28 16:11:18 kleing Exp $ Author: Tobias Nipkow, Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{LBV for the JVM}\label{sec:JVM} *} theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM: types prog_cert = "cname \<Rightarrow> sig \<Rightarrow> state list" constdefs check_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state list \<Rightarrow> bool" "check_cert G mxs mxr n cert \<equiv> check_types G mxs mxr n cert \<and> length cert = n+1 \<and> (\<forall>i<n. cert!i \<noteq> Err) \<and> cert!n = OK {}" lbvjvm :: "jvm_prog \<Rightarrow> cname \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> state \<Rightarrow> state" "lbvjvm G C maxs maxr rT ini et cert bs \<equiv> wtl_inst_list bs cert JVMType.sup JVMType.le Err (OK {}) (exec G C maxs rT ini et bs) 0" wt_lbv :: "jvm_prog \<Rightarrow> cname \<Rightarrow> mname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> bool" "wt_lbv G C mn pTs rT mxs mxl et cert ins \<equiv> check_cert G mxs (1+size pTs+mxl) (length ins) cert \<and> 0 < size ins \<and> (let this = OK (if mn=init \<and> C \<noteq> Object then PartInit C else Init (Class C)); start = {(([],this#(map (OK\<circ>Init) pTs)@(replicate mxl Err)),C=Object)}; result = lbvjvm G C mxs (1+size pTs+mxl) rT (mn=init) et cert ins (OK start) in result \<noteq> Err)" wt_jvm_prog_lbv :: "jvm_prog \<Rightarrow> prog_cert \<Rightarrow> bool" "wt_jvm_prog_lbv G cert \<equiv> wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_lbv G C (fst sig) (snd sig) rT maxs maxl et (cert C sig) b) G" mk_cert :: "jvm_prog \<Rightarrow> cname \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> method_type \<Rightarrow> state list" "mk_cert G C maxs rT ini et bs phi \<equiv> make_cert (exec G C maxs rT ini et bs) (map OK phi) (OK {})" prg_cert :: "jvm_prog \<Rightarrow> prog_type \<Rightarrow> prog_cert" "prg_cert G phi C sig \<equiv> let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in mk_cert G C maxs rT (fst sig=init) et ins (phi C sig)" lemma check_certD: "check_cert G mxs mxr n cert \<Longrightarrow> cert_ok cert n Err (OK {}) (states G mxs mxr n)" by (unfold cert_ok_def check_cert_def check_types_def) auto lemma (in start_context) first_in_A: "OK {first} \<in> A" apply (insert pTs C) apply (simp add: states_def address_types_def init_tys_def max_dim_def) apply (auto intro!: list_appendI) apply force+ done lemma (in start_context) wt_lbv_wt_step: assumes lbv: "wt_lbv G C mn pTs rT mxs mxl et cert bs" defines [simp]: "f \<equiv> JVMType.sup" shows "\<exists>ts \<in> list (size bs) A. wt_step r Err step ts \<and> OK {first} <=_r ts!0" proof - have "semilat (JVMType.sl G mxs mxr (size bs))" by (rule semilat_JVM) hence "semilat (A, r, f)" by (simp add: sl_def2) moreover have "top r Err" by (simp add: JVMType.le_def) moreover have "Err \<in> A" by (simp add: states_def) moreover have "bottom r (OK {})" by (simp add: JVMType.le_def bottom_def lesub_def Err.le_def split: err.split) moreover have "OK {} \<in> A" by (simp add: states_def) moreover have "bounded step (length bs) A" by (simp add: bounded_exec) moreover from lbv have "cert_ok cert (length bs) Err (OK {}) A" by (unfold wt_lbv_def) (auto dest: check_certD) moreover from wf have "pres_type step (length bs) A" by simp (rule exec_pres_type) moreover from lbv have "wtl_inst_list bs cert f r Err (OK {}) step 0 (OK {first}) \<noteq> Err" by (simp add: wt_lbv_def lbvjvm_def) moreover note first_in_A moreover from lbv have "0 < length bs" by (simp add: wt_lbv_def) ultimately show ?thesis by (rule lbvs.wtl_sound_strong) qed lemma in_list: "(xs \<in> list n A) = (length xs = n \<and> set xs \<subseteq> A)" by (unfold list_def) auto lemma (in start_context) wt_lbv_wt_method: assumes lbv: "wt_lbv G C mn pTs rT mxs mxl et cert bs" shows "\<exists>phi. wt_method G C mn pTs rT mxs mxl bs et phi" proof - from lbv have l: "bs \<noteq> []" by (simp add: wt_lbv_def) moreover from wf lbv C pTs obtain phi where list: "phi \<in> list (length bs) A" and step: "wt_step r Err step phi" and start: "OK {first} <=_r phi!0" by (blast dest: wt_lbv_wt_step) from list have [simp]: "length phi = length bs" by simp have "length (map ok_val phi) = length bs" by simp moreover from l have 0: "0 < length phi" by simp with step obtain phi0 where "phi!0 = OK phi0" by (unfold wt_step_def) blast with start 0 have "wt_start G C mn pTs mxl (map ok_val phi)" by (simp add: wt_start_def JVMType.le_def lesub_def map_compose Err.le_def) moreover { from list have "check_types G mxs mxr (length bs) phi" by (simp add: check_types_def) also from step have [symmetric]: "map OK (map ok_val phi) = phi" by (auto intro!: map_id simp add: wt_step_def) finally have "check_types G mxs mxr (length bs) (map OK (map ok_val phi))" . } moreover { have "bounded (err_step (length phi) app eff) (length bs) A" by (simp, fold exec_def) (rule bounded_exec) moreover from list have "set phi \<subseteq> A" by simp moreover from step have "wt_err_step (op \<subseteq>) step phi" by (simp add: wt_err_step_def JVMType.le_def) ultimately have "wt_app_eff (op \<subseteq>) app eff (map ok_val phi)" by (auto intro: wt_err_imp_wt_app_eff simp add: exec_def states_def) } ultimately have "wt_method G C mn pTs rT mxs mxl bs et (map ok_val phi)" by (simp add: wt_method_def2) thus ?thesis .. qed lemma (in start_context) wt_method_wt_lbv: assumes wt: "wt_method G C mn pTs rT mxs mxl bs et phi" defines [simp]: "cert \<equiv> mk_cert G C mxs rT (mn=init) et bs phi" defines [simp]: "f \<equiv> JVMType.sup" shows "wt_lbv G C mn pTs rT mxs mxl et cert bs" proof - let ?phi = "map OK phi" let ?cert = "make_cert step ?phi (OK {})" from wt obtain 0: "0 < length bs" and length: "length bs = length ?phi" and ck_types: "check_types G mxs mxr (length bs) ?phi" and wt_start: "wt_start G C mn pTs mxl phi" and app_eff: "wt_app_eff (op \<subseteq>) app eff phi" by (force simp add: wt_method_def2) have "semilat (JVMType.sl G mxs mxr (size bs))" by (rule semilat_JVM) hence "semilat (A, r, f)" by (simp add: sl_def2) moreover have "top r Err" by (simp add: JVMType.le_def) moreover have "Err \<in> A" by (simp add: states_def) moreover have "bottom r (OK {})" by (simp add: JVMType.le_def bottom_def Err.le_def lesub_def split: err.splits) moreover have "OK {} \<in> A" by (simp add: states_def) moreover have bounded: "bounded step (length bs) A" by (simp add: bounded_exec) with wf have "mono r step (length bs) A" by simp (rule exec_mono) hence "mono r step (length ?phi) A" by (simp add: length) moreover from wf have "pres_type step (length bs) A" by simp (rule exec_pres_type) hence "pres_type step (length ?phi) A" by (simp add: length) moreover from ck_types have phi_in_A: "set ?phi \<subseteq> A" by (simp add: check_types_def) hence "\<forall>pc. pc < length ?phi \<longrightarrow> ?phi!pc \<in> A \<and> ?phi!pc \<noteq> Err" by auto moreover from bounded have "bounded step (length ?phi) A" by (simp add: length) moreover have "OK {} \<noteq> Err" by simp moreover from bounded length phi_in_A app_eff have "wt_err_step (op \<subseteq>) step ?phi" by (auto intro: wt_app_eff_imp_wt_err simp add: exec_def states_def) hence "wt_step r Err step ?phi" by (simp add: wt_err_step_def JVMType.le_def) moreover from 0 length have "0 < length phi" by auto hence "?phi!0 = OK (phi!0)" by simp with wt_start have "OK {first} <=_r ?phi!0" by (clarsimp simp add: wt_start_def lesub_def Err.le_def JVMType.le_def map_compose) moreover note first_in_A moreover have "OK {first} \<noteq> Err" by simp moreover note length ultimately have "wtl_inst_list bs ?cert f r Err (OK {}) step 0 (OK {first}) \<noteq> Err" by (rule lbvc.wtl_complete) moreover from 0 length have "phi \<noteq> []" by auto moreover from ck_types have "check_types G mxs mxr (length bs) ?cert" by (force simp add: make_cert_def check_types_def states_def) moreover note 0 length ultimately show ?thesis by (simp add: wt_lbv_def lbvjvm_def mk_cert_def check_cert_def make_cert_def nth_append) qed theorem jvm_lbv_correct: "wt_jvm_prog_lbv G Cert \<Longrightarrow> \<exists>Phi. wt_jvm_prog G Phi" proof - let ?Phi = "\<lambda>C sig. let (C,rT,(maxs,maxl,bs,et)) = the (method (G,C) sig) in SOME phi. wt_method G C (fst sig) (snd sig) rT maxs maxl bs et phi" assume "wt_jvm_prog_lbv G Cert" hence "wt_jvm_prog G ?Phi" apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def) apply (erule jvm_prog_lift) apply (auto dest!: start_context.wt_lbv_wt_method intro: someI) done thus ?thesis by blast qed theorem jvm_lbv_complete: "wt_jvm_prog G Phi \<Longrightarrow> wt_jvm_prog_lbv G (prg_cert G Phi)" apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def) apply (erule jvm_prog_lift) apply (auto simp add: prg_cert_def intro: start_context.wt_method_wt_lbv) done end
lemma check_certD:
check_cert G mxs mxr n cert ==> cert_ok cert n Err (OK {}) (states G mxs mxr n)
lemma first_in_A:
[| wf_prog wf_mb G; is_class G C; Init ` set pTs <= init_tys G (length bs) |] ==> OK {(([], OK (if mn = init & C ~= Object then PartInit C else Init (Class C)) # map (OK o Init) pTs @ replicate mxl Err), C = Object)} : states G mxs (1 + length pTs + mxl) (length bs)
lemma
[| wf_prog wf_mb G; is_class G C; Init ` set pTs <= init_tys G (length bs); wt_lbv G C mn pTs rT mxs mxl et cert bs |] ==> EX ts:list (length bs) (states G mxs (1 + length pTs + mxl) (length bs)). wt_step JVMType.le Err (Typing_Framework_JVM.exec G C mxs rT (mn = init) et bs) ts & OK {(([], OK (if mn = init & C ~= Object then PartInit C else Init (Class C)) # map (OK o Init) pTs @ replicate mxl Err), C = Object)} <=_JVMType.le ts ! 0
lemma in_list:
(xs : list n A) = (length xs = n & set xs <= A)
lemma
[| wf_prog wf_mb G; is_class G C; Init ` set pTs <= init_tys G (length bs); wt_lbv G C mn pTs rT mxs mxl et cert bs |] ==> EX phi. wt_method G C mn pTs rT mxs mxl bs et phi
lemma
[| wf_prog wf_mb G; is_class G C; Init ` set pTs <= init_tys G (length bs); wt_method G C mn pTs rT mxs mxl bs et phi |] ==> wt_lbv G C mn pTs rT mxs mxl et (mk_cert G C mxs rT (mn = init) et bs phi) bs
theorem jvm_lbv_correct:
wt_jvm_prog_lbv G Cert ==> EX Phi. wt_jvm_prog G Phi
theorem jvm_lbv_complete:
wt_jvm_prog G Phi ==> wt_jvm_prog_lbv G (prg_cert G Phi)