Up to index of Isabelle/HOL/exceptions
theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM:(* Title: HOL/MicroJava/BV/JVM.thy ID: $Id: LBVJVM.html,v 1.1 2002/11/28 13:16:31 kleing Exp $ Author: Tobias Nipkow, Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{LBV for the JVM}\label{sec:JVM} *} theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM: types prog_cert = "cname \<Rightarrow> sig \<Rightarrow> state list" constdefs check_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state list \<Rightarrow> bool" "check_cert G mxs mxr n cert \<equiv> check_types G mxs mxr cert \<and> length cert = n+1 \<and> (\<forall>i<n. cert!i \<noteq> Err) \<and> cert!n = OK None" lbvjvm :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> state \<Rightarrow> state" "lbvjvm G maxs maxr rT et cert bs \<equiv> wtl_inst_list bs cert (JVMType.sup G maxs maxr) (JVMType.le G maxs maxr) Err (OK None) (exec G maxs rT et bs) 0" wt_lbv :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> bool" "wt_lbv G C pTs rT mxs mxl et cert ins \<equiv> check_bounded ins et \<and> check_cert G mxs (1+size pTs+mxl) (length ins) cert \<and> 0 < size ins \<and> (let start = Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)); result = lbvjvm G mxs (1+size pTs+mxl) rT et cert ins (OK start) in result \<noteq> Err)" wt_jvm_prog_lbv :: "jvm_prog \<Rightarrow> prog_cert \<Rightarrow> bool" "wt_jvm_prog_lbv G cert \<equiv> wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_lbv G C (snd sig) rT maxs maxl et (cert C sig) b) G" mk_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> method_type \<Rightarrow> state list" "mk_cert G maxs rT et bs phi \<equiv> make_cert (exec G maxs rT et bs) (map OK phi) (OK None)" prg_cert :: "jvm_prog \<Rightarrow> prog_type \<Rightarrow> prog_cert" "prg_cert G phi C sig \<equiv> let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in mk_cert G maxs rT et ins (phi C sig)" lemma wt_method_def2: fixes pTs and mxl and G and mxs and rT and et and bs and phi defines [simp]: "mxr \<equiv> 1 + length pTs + mxl" defines [simp]: "r \<equiv> sup_state_opt G" defines [simp]: "app0 \<equiv> \<lambda>pc. app (bs!pc) G mxs rT pc et" defines [simp]: "step0 \<equiv> \<lambda>pc. eff (bs!pc) G pc et" shows "wt_method G C pTs rT mxs mxl bs et phi = (bs \<noteq> [] \<and> length phi = length bs \<and> check_bounded bs et \<and> check_types G mxs mxr (map OK phi) \<and> wt_start G C pTs mxl phi \<and> wt_app_eff r app0 step0 phi)" by (auto simp add: wt_method_def wt_app_eff_def wt_instr_def lesub_def dest: check_bounded_is_bounded boundedD) lemma check_certD: "check_cert G mxs mxr n cert \<Longrightarrow> cert_ok cert n Err (OK None) (states G mxs mxr)" apply (unfold cert_ok_def check_cert_def check_types_def) apply (auto simp add: list_all_ball) done lemma wt_lbv_wt_step: assumes wf: "wf_prog wf_mb G" assumes lbv: "wt_lbv G C pTs rT mxs mxl et cert ins" assumes C: "is_class G C" assumes pTs: "set pTs \<subseteq> types G" defines [simp]: "mxr \<equiv> 1+length pTs+mxl" shows "\<exists>ts \<in> list (size ins) (states G mxs mxr). wt_step (JVMType.le G mxs mxr) Err (exec G mxs rT et ins) ts \<and> OK (Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err))) <=_(JVMType.le G mxs mxr) ts!0" proof - let ?step = "exec G mxs rT et ins" let ?r = "JVMType.le G mxs mxr" let ?f = "JVMType.sup G mxs mxr" let ?A = "states G mxs mxr" have "semilat (JVMType.sl G mxs mxr)" by (rule semilat_JVM_slI) hence "semilat (?A, ?r, ?f)" by (unfold sl_triple_conv) moreover have "top ?r Err" by (simp add: JVM_le_unfold) moreover have "Err \<in> ?A" by (simp add: JVM_states_unfold) moreover have "bottom ?r (OK None)" by (simp add: JVM_le_unfold bottom_def) moreover have "OK None \<in> ?A" by (simp add: JVM_states_unfold) moreover from lbv have "bounded ?step (length ins)" by (clarsimp simp add: wt_lbv_def exec_def) (intro bounded_lift check_bounded_is_bounded) moreover from lbv have "cert_ok cert (length ins) Err (OK None) ?A" by (unfold wt_lbv_def) (auto dest: check_certD) moreover have "pres_type ?step (length ins) ?A" by (rule exec_pres_type) moreover let ?start = "OK (Some ([],(OK (Class C))#(map OK pTs)@(replicate mxl Err)))" from lbv have "wtl_inst_list ins cert ?f ?r Err (OK None) ?step 0 ?start \<noteq> Err" by (simp add: wt_lbv_def lbvjvm_def) moreover from C pTs have "?start \<in> ?A" by (unfold JVM_states_unfold) (auto intro: list_appendI, force) moreover from lbv have "0 < length ins" by (simp add: wt_lbv_def) ultimately show ?thesis by (rule lbvs.wtl_sound_strong) qed lemma wt_lbv_wt_method: assumes wf: "wf_prog wf_mb G" assumes lbv: "wt_lbv G C pTs rT mxs mxl et cert ins" assumes C: "is_class G C" assumes pTs: "set pTs \<subseteq> types G" shows "\<exists>phi. wt_method G C pTs rT mxs mxl ins et phi" proof - let ?mxr = "1 + length pTs + mxl" let ?step = "exec G mxs rT et ins" let ?r = "JVMType.le G mxs ?mxr" let ?f = "JVMType.sup G mxs ?mxr" let ?A = "states G mxs ?mxr" let ?start = "OK (Some ([],(OK (Class C))#(map OK pTs)@(replicate mxl Err)))" from lbv have l: "ins \<noteq> []" by (simp add: wt_lbv_def) moreover from wf lbv C pTs obtain phi where list: "phi \<in> list (length ins) ?A" and step: "wt_step ?r Err ?step phi" and start: "?start <=_?r phi!0" by (blast dest: wt_lbv_wt_step) from list have [simp]: "length phi = length ins" by simp have "length (map ok_val phi) = length ins" by simp moreover from l have 0: "0 < length phi" by simp with step obtain phi0 where "phi!0 = OK phi0" by (unfold wt_step_def) blast with start 0 have "wt_start G C pTs mxl (map ok_val phi)" by (simp add: wt_start_def JVM_le_Err_conv lesub_def) moreover from lbv have chk_bounded: "check_bounded ins et" by (simp add: wt_lbv_def) moreover { from list have "check_types G mxs ?mxr phi" by (simp add: check_types_def) also from step have [symmetric]: "map OK (map ok_val phi) = phi" by (auto intro!: map_id simp add: wt_step_def) finally have "check_types G mxs ?mxr (map OK (map ok_val phi))" . } moreover { let ?app = "\<lambda>pc. app (ins!pc) G mxs rT pc et" let ?eff = "\<lambda>pc. eff (ins!pc) G pc et" from chk_bounded have "bounded (err_step (length ins) ?app ?eff) (length ins)" by (blast dest: check_bounded_is_bounded boundedD intro: bounded_err_stepI) moreover from step have "wt_err_step (sup_state_opt G) ?step phi" by (simp add: wt_err_step_def JVM_le_Err_conv) ultimately have "wt_app_eff (sup_state_opt G) ?app ?eff (map ok_val phi)" by (auto intro: wt_err_imp_wt_app_eff simp add: exec_def) } ultimately have "wt_method G C pTs rT mxs mxl ins et (map ok_val phi)" by - (rule wt_method_def2 [THEN iffD2], simp) thus ?thesis .. qed lemma wt_method_wt_lbv: assumes wf: "wf_prog wf_mb G" assumes wt: "wt_method G C pTs rT mxs mxl ins et phi" assumes C: "is_class G C" assumes pTs: "set pTs \<subseteq> types G" defines [simp]: "cert \<equiv> mk_cert G mxs rT et ins phi" shows "wt_lbv G C pTs rT mxs mxl et cert ins" proof - let ?mxr = "1 + length pTs + mxl" let ?step = "exec G mxs rT et ins" let ?app = "\<lambda>pc. app (ins!pc) G mxs rT pc et" let ?eff = "\<lambda>pc. eff (ins!pc) G pc et" let ?r = "JVMType.le G mxs ?mxr" let ?f = "JVMType.sup G mxs ?mxr" let ?A = "states G mxs ?mxr" let ?phi = "map OK phi" let ?cert = "make_cert ?step ?phi (OK None)" from wt obtain 0: "0 < length ins" and length: "length ins = length ?phi" and ck_bounded: "check_bounded ins et" and ck_types: "check_types G mxs ?mxr ?phi" and wt_start: "wt_start G C pTs mxl phi" and app_eff: "wt_app_eff (sup_state_opt G) ?app ?eff phi" by (simp (asm_lr) add: wt_method_def2) have "semilat (JVMType.sl G mxs ?mxr)" by (rule semilat_JVM_slI) hence "semilat (?A, ?r, ?f)" by (unfold sl_triple_conv) moreover have "top ?r Err" by (simp add: JVM_le_unfold) moreover have "Err \<in> ?A" by (simp add: JVM_states_unfold) moreover have "bottom ?r (OK None)" by (simp add: JVM_le_unfold bottom_def) moreover have "OK None \<in> ?A" by (simp add: JVM_states_unfold) moreover from ck_bounded have bounded: "bounded ?step (length ins)" by (clarsimp simp add: exec_def) (intro bounded_lift check_bounded_is_bounded) with wf have "mono ?r ?step (length ins) ?A" by (rule exec_mono) hence "mono ?r ?step (length ?phi) ?A" by (simp add: length) moreover have "pres_type ?step (length ins) ?A" by (rule exec_pres_type) hence "pres_type ?step (length ?phi) ?A" by (simp add: length) moreover from ck_types have "set ?phi \<subseteq> ?A" by (simp add: check_types_def) hence "\<forall>pc. pc < length ?phi \<longrightarrow> ?phi!pc \<in> ?A \<and> ?phi!pc \<noteq> Err" by auto moreover from bounded have "bounded (exec G mxs rT et ins) (length ?phi)" by (simp add: length) moreover have "OK None \<noteq> Err" by simp moreover from bounded length app_eff have "wt_err_step (sup_state_opt G) ?step ?phi" by (auto intro: wt_app_eff_imp_wt_err simp add: exec_def) hence "wt_step ?r Err ?step ?phi" by (simp add: wt_err_step_def JVM_le_Err_conv) moreover let ?start = "OK (Some ([],(OK (Class C))#(map OK pTs)@(replicate mxl Err)))" from 0 length have "0 < length phi" by auto hence "?phi!0 = OK (phi!0)" by simp with wt_start have "?start <=_?r ?phi!0" by (clarsimp simp add: wt_start_def lesub_def JVM_le_Err_conv) moreover from C pTs have "?start \<in> ?A" by (unfold JVM_states_unfold) (auto intro: list_appendI, force) moreover have "?start \<noteq> Err" by simp moreover note length ultimately have "wtl_inst_list ins ?cert ?f ?r Err (OK None) ?step 0 ?start \<noteq> Err" by (rule lbvc.wtl_complete) moreover from 0 length have "phi \<noteq> []" by auto moreover from ck_types have "check_types G mxs ?mxr ?cert" by (auto simp add: make_cert_def check_types_def JVM_states_unfold) moreover note ck_bounded 0 length ultimately show ?thesis by (simp add: wt_lbv_def lbvjvm_def mk_cert_def check_cert_def make_cert_def nth_append) qed theorem jvm_lbv_correct: "wt_jvm_prog_lbv G Cert \<Longrightarrow> \<exists>Phi. wt_jvm_prog G Phi" proof - let ?Phi = "\<lambda>C sig. let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in SOME phi. wt_method G C (snd sig) rT maxs maxl ins et phi" assume "wt_jvm_prog_lbv G Cert" hence "wt_jvm_prog G ?Phi" apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def) apply (erule jvm_prog_lift) apply (auto dest: wt_lbv_wt_method intro: someI) done thus ?thesis by blast qed theorem jvm_lbv_complete: "wt_jvm_prog G Phi \<Longrightarrow> wt_jvm_prog_lbv G (prg_cert G Phi)" apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def) apply (erule jvm_prog_lift) apply (auto simp add: prg_cert_def intro wt_method_wt_lbv) done end
lemma
wt_method G C pTs rT mxs mxl bs et phi = (bs ~= [] & length phi = length bs & check_bounded bs et & check_types G mxs (1 + length pTs + mxl) (map OK phi) & wt_start G C pTs mxl phi & wt_app_eff (sup_state_opt G) (%pc. app (bs ! pc) G mxs rT pc et) (%pc. eff (bs ! pc) G pc et) phi)
lemma check_certD:
check_cert G mxs mxr n cert ==> cert_ok cert n Err (OK None) (states G mxs mxr)
lemma
[| wf_prog wf_mb G; wt_lbv G C pTs rT mxs mxl et cert ins; is_class G C; set pTs <= types G |] ==> EX ts:list (length ins) (states G mxs (1 + length pTs + mxl)). wt_step (JVMType.le G mxs (1 + length pTs + mxl)) Err (exec G mxs rT et ins) ts & OK (Some ([], OK (Class C) # map OK pTs @ replicate mxl Err)) <=_(JVMType.le G mxs (1 + length pTs + mxl)) ts ! 0
lemma
[| wf_prog wf_mb G; wt_lbv G C pTs rT mxs mxl et cert ins; is_class G C; set pTs <= types G |] ==> EX phi. wt_method G C pTs rT mxs mxl ins et phi
lemma
[| wf_prog wf_mb G; wt_method G C pTs rT mxs mxl ins et phi; is_class G C; set pTs <= types G |] ==> wt_lbv G C pTs rT mxs mxl et (mk_cert G mxs rT et ins phi) ins
theorem jvm_lbv_correct:
wt_jvm_prog_lbv G Cert ==> EX Phi. wt_jvm_prog G Phi
theorem jvm_lbv_complete:
wt_jvm_prog G Phi ==> wt_jvm_prog_lbv G (prg_cert G Phi)