Up to index of Isabelle/HOL/exceptions
theory Typing_Framework_JVM = Typing_Framework_err + JVMType + EffectMono + BVSpec:(* Title: HOL/MicroJava/BV/JVM.thy ID: $Id: Typing_Framework_JVM.html,v 1.1 2002/11/28 13:16:31 kleing Exp $ Author: Tobias Nipkow, Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{The Typing Framework for the JVM}\label{sec:JVM} *} theory Typing_Framework_JVM = Typing_Framework_err + JVMType + EffectMono + BVSpec: constdefs exec :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> state step_type" "exec G maxs rT et bs == err_step (size bs) (\<lambda>pc. app (bs!pc) G maxs rT pc et) (\<lambda>pc. eff (bs!pc) G pc et)" constdefs opt_states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (ty list × ty err list) option set" "opt_states G maxs maxr \<equiv> opt (\<Union>{list n (types G) |n. n \<le> maxs} × list maxr (err (types G)))" section {* Executability of @{term check_bounded} *} consts list_all'_rec :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> bool" primrec "list_all'_rec P n [] = True" "list_all'_rec P n (x#xs) = (P x n \<and> list_all'_rec P (Suc n) xs)" constdefs list_all' :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" "list_all' P xs \<equiv> list_all'_rec P 0 xs" lemma list_all'_rec: "\<And>n. list_all'_rec P n xs = (\<forall>p < size xs. P (xs!p) (p+n))" apply (induct xs) apply auto apply (case_tac p) apply auto done lemma list_all' [iff]: "list_all' P xs = (\<forall>n < size xs. P (xs!n) n)" by (unfold list_all'_def) (simp add: list_all'_rec) lemma list_all_ball: "list_all P xs = (\<forall>x \<in> set xs. P x)" by (induct xs) auto lemma [code]: "check_bounded ins et = (list_all' (\<lambda>i pc. list_all (\<lambda>pc'. pc' < length ins) (succs i pc)) ins \<and> list_all (\<lambda>e. fst (snd (snd e)) < length ins) et)" by (simp add: list_all_ball check_bounded_def) section {* Connecting JVM and Framework *} lemma check_bounded_is_bounded: "check_bounded ins et \<Longrightarrow> bounded (\<lambda>pc. eff (ins!pc) G pc et) (length ins)" by (unfold bounded_def) (blast dest: check_boundedD) lemma special_ex_swap_lemma [iff]: "(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)" by blast lemmas [iff del] = not_None_eq theorem exec_pres_type: "wf_prog wf_mb S \<Longrightarrow> pres_type (exec S maxs rT et bs) (size bs) (states S maxs maxr)" apply (unfold exec_def JVM_states_unfold) apply (rule pres_type_lift) apply clarify apply (case_tac s) apply simp apply (drule effNone) apply simp apply (simp add: eff_def xcpt_eff_def norm_eff_def) apply (case_tac "bs!p") apply (clarsimp simp add: not_Err_eq) apply (drule listE_nth_in, assumption) apply fastsimp apply (fastsimp simp add: not_None_eq) apply (fastsimp simp add: not_None_eq typeof_empty_is_type) apply clarsimp apply (erule disjE) apply fastsimp apply clarsimp apply (rule_tac x="1" in exI) apply fastsimp apply clarsimp apply (erule disjE) apply (fastsimp dest: field_fields fields_is_type) apply (simp add: match_some_entry split: split_if_asm) apply (rule_tac x=1 in exI) apply fastsimp apply clarsimp apply (erule disjE) apply fastsimp apply (simp add: match_some_entry split: split_if_asm) apply (rule_tac x=1 in exI) apply fastsimp apply clarsimp apply (erule disjE) apply fastsimp apply clarsimp apply (rule_tac x=1 in exI) apply fastsimp defer apply fastsimp apply fastsimp apply clarsimp apply (rule_tac x="n'+2" in exI) apply simp apply clarsimp apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI) apply simp apply clarsimp apply (rule_tac x="Suc (Suc (Suc (Suc (length ST))))" in exI) apply simp apply fastsimp apply fastsimp apply fastsimp apply fastsimp apply clarsimp apply (erule disjE) apply fastsimp apply clarsimp apply (rule_tac x=1 in exI) apply fastsimp apply (erule disjE) apply (clarsimp simp add: Un_subset_iff) apply (drule method_wf_mdecl, assumption+) apply (clarsimp simp add: wf_mdecl_def wf_mhead_def) apply fastsimp apply clarsimp apply (rule_tac x=1 in exI) apply fastsimp done lemmas [iff] = not_None_eq lemma sup_state_opt_unfold: "sup_state_opt G \<equiv> Opt.le (Product.le (Listn.le (subtype G)) (Listn.le (Err.le (subtype G))))" by (simp add: sup_state_opt_def sup_state_def sup_loc_def sup_ty_opt_def) lemma app_mono: "app_mono (sup_state_opt G) (\<lambda>pc. app (bs!pc) G maxs rT pc et) (length bs) (opt_states G maxs maxr)" by (unfold app_mono_def lesub_def) (blast intro: EffectMono.app_mono) lemma list_appendI: "\<lbrakk>a \<in> list x A; b \<in> list y A\<rbrakk> \<Longrightarrow> a @ b \<in> list (x+y) A" apply (unfold list_def) apply (simp (no_asm)) apply blast done lemma list_map [simp]: "(map f xs \<in> list (length xs) A) = (f ` set xs \<subseteq> A)" apply (unfold list_def) apply simp done lemma [iff]: "(OK ` A \<subseteq> err B) = (A \<subseteq> B)" apply (unfold err_def) apply blast done lemma [intro]: "x \<in> A \<Longrightarrow> replicate n x \<in> list n A" by (induct n, auto) lemma lesubstep_type_simple: "a <=[Product.le (op =) r] b \<Longrightarrow> a <=|r| b" apply (unfold lesubstep_type_def) apply clarify apply (simp add: set_conv_nth) apply clarify apply (drule le_listD, assumption) apply (clarsimp simp add: lesub_def Product.le_def) apply (rule exI) apply (rule conjI) apply (rule exI) apply (rule conjI) apply (rule sym) apply assumption apply assumption apply assumption done lemma eff_mono: "\<lbrakk>p < length bs; s <=_(sup_state_opt G) t; app (bs!p) G maxs rT pc et t\<rbrakk> \<Longrightarrow> eff (bs!p) G p et s <=|sup_state_opt G| eff (bs!p) G p et t" apply (unfold eff_def) apply (rule lesubstep_type_simple) apply (rule le_list_appendI) apply (simp add: norm_eff_def) apply (rule le_listI) apply simp apply simp apply (simp add: lesub_def) apply (case_tac s) apply simp apply (simp del: split_paired_All split_paired_Ex) apply (elim exE conjE) apply simp apply (drule eff'_mono, assumption) apply assumption apply (simp add: xcpt_eff_def) apply (rule le_listI) apply simp apply simp apply (simp add: lesub_def) apply (case_tac s) apply simp apply simp apply (case_tac t) apply simp apply (clarsimp simp add: sup_state_conv) done lemma order_sup_state_opt: "wf_prog wf_mb G \<Longrightarrow> order (sup_state_opt G)" by (unfold sup_state_opt_unfold) (blast dest: acyclic_subcls1 order_widen) theorem exec_mono: "wf_prog wf_mb G \<Longrightarrow> bounded (exec G maxs rT et bs) (size bs) \<Longrightarrow> mono (JVMType.le G maxs maxr) (exec G maxs rT et bs) (size bs) (states G maxs maxr)" apply (unfold exec_def JVM_le_unfold JVM_states_unfold) apply (rule mono_lift) apply (fold sup_state_opt_unfold opt_states_def) apply (erule order_sup_state_opt) apply (rule app_mono) apply assumption apply clarify apply (rule eff_mono) apply assumption+ done theorem semilat_JVM_slI: "wf_prog wf_mb G \<Longrightarrow> semilat (JVMType.sl G maxs maxr)" apply (unfold JVMType.sl_def stk_esl_def reg_sl_def) apply (rule semilat_opt) apply (rule err_semilat_Product_esl) apply (rule err_semilat_upto_esl) apply (rule err_semilat_JType_esl, assumption+) apply (rule err_semilat_eslI) apply (rule Listn_sl) apply (rule err_semilat_JType_esl, assumption+) done lemma sl_triple_conv: "JVMType.sl G maxs maxr == (states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)" by (simp (no_asm) add: states_def JVMType.le_def JVMType.sup_def) lemma map_id [rule_format]: "(\<forall>n < length xs. f (g (xs!n)) = xs!n) \<longrightarrow> map f (map g xs) = xs" by (induct xs, auto) lemma is_type_pTs: "\<lbrakk> wf_prog wf_mb G; (C,S,fs,mdecls) \<in> set G; ((mn,pTs),rT,code) \<in> set mdecls \<rbrakk> \<Longrightarrow> set pTs \<subseteq> types G" proof assume "wf_prog wf_mb G" "(C,S,fs,mdecls) \<in> set G" "((mn,pTs),rT,code) \<in> set mdecls" hence "wf_mdecl wf_mb G C ((mn,pTs),rT,code)" by (unfold wf_prog_def wf_cdecl_def) auto hence "\<forall>t \<in> set pTs. is_type G t" by (unfold wf_mdecl_def wf_mhead_def) auto moreover fix t assume "t \<in> set pTs" ultimately have "is_type G t" by blast thus "t \<in> types G" .. qed lemma jvm_prog_lift: assumes wf: "wf_prog (\<lambda>G C bd. P G C bd) G" assumes rule: "\<And>wf_mb C mn pTs C rT maxs maxl b et bd. wf_prog wf_mb G \<Longrightarrow> method (G,C) (mn,pTs) = Some (C,rT,maxs,maxl,b,et) \<Longrightarrow> is_class G C \<Longrightarrow> set pTs \<subseteq> types G \<Longrightarrow> bd = ((mn,pTs),rT,maxs,maxl,b,et) \<Longrightarrow> P G C bd \<Longrightarrow> Q G C bd" shows "wf_prog (\<lambda>G C bd. Q G C bd) G" proof - from wf show ?thesis apply (unfold wf_prog_def wf_cdecl_def) apply clarsimp apply (drule bspec, assumption) apply (unfold wf_mdecl_def) apply clarsimp apply (drule bspec, assumption) apply clarsimp apply (frule methd [OF wf], assumption+) apply (frule is_type_pTs [OF wf], assumption+) apply clarify apply (drule rule [OF wf], assumption+) apply (rule refl) apply assumption+ done qed end
lemma list_all'_rec:
list_all'_rec P n xs = (ALL p. p < length xs --> P (xs ! p) (p + n))
lemma list_all':
list_all' P xs = (ALL n. n < length xs --> P (xs ! n) n)
lemma list_all_ball:
list_all P xs = Ball (set xs) P
lemma
check_bounded ins et = (list_all' (%i pc. list_all (%pc'. pc' < length ins) (succs i pc)) ins & list_all (%e. fst (snd (snd e)) < length ins) et)
lemma check_bounded_is_bounded:
check_bounded ins et ==> bounded (%pc. eff (ins ! pc) G pc et) (length ins)
lemma special_ex_swap_lemma:
(EX X. (EX n. X = A n & P n) & Q X) = (EX n. Q (A n) & P n)
lemmas
(x ~= None) = (EX y. x = Some y)
theorem exec_pres_type:
wf_prog wf_mb S ==> pres_type (exec S maxs rT et bs) (length bs) (states S maxs maxr)
lemmas
(x ~= None) = (EX y. x = Some y)
lemma sup_state_opt_unfold:
sup_state_opt G == Opt.le (Product.le (Listn.le (subtype G)) (Listn.le (Err.le (subtype G))))
lemma app_mono:
app_mono (sup_state_opt G) (%pc. app (bs ! pc) G maxs rT pc et) (length bs) (opt_states G maxs maxr)
lemma list_appendI:
[| a : list x A; b : list y A |] ==> a @ b : list (x + y) A
lemma list_map:
(map f xs : list (length xs) A) = (f ` set xs <= A)
lemma
(OK ` A <= err B) = (A <= B)
lemma
x : A ==> replicate n x : list n A
lemma lesubstep_type_simple:
a <=[Product.le op = r] b ==> a <=|r| b
lemma eff_mono:
[| p < length bs; s <=_(sup_state_opt G) t; app (bs ! p) G maxs rT pc et t |] ==> eff (bs ! p) G p et s <=|sup_state_opt G| eff (bs ! p) G p et t
lemma order_sup_state_opt:
wf_prog wf_mb G ==> order (sup_state_opt G)
theorem exec_mono:
[| wf_prog wf_mb G; bounded (exec G maxs rT et bs) (length bs) |] ==> SemilatAlg.mono (JVMType.le G maxs maxr) (exec G maxs rT et bs) (length bs) (states G maxs maxr)
theorem semilat_JVM_slI:
wf_prog wf_mb G ==> semilat (JVMType.sl G maxs maxr)
lemma sl_triple_conv:
JVMType.sl G maxs maxr == (states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)
lemma map_id:
(!!n. n < length xs ==> f (g (xs ! n)) = xs ! n) ==> map f (map g xs) = xs
lemma is_type_pTs:
[| wf_prog wf_mb G; (C, S, fs, mdecls) : set G; ((mn, pTs), rT, code) : set mdecls |] ==> set pTs <= types G
lemma
[| wf_prog P G; !!wf_mb C mn pTs Ca rT maxs maxl b et bd. [| wf_prog wf_mb G; method (G, Ca) (mn, pTs) = Some (Ca, rT, maxs, maxl, b, et); is_class G Ca; set pTs <= types G; bd = ((mn, pTs), rT, maxs, maxl, b, et); P G Ca bd |] ==> Q G Ca bd |] ==> wf_prog Q G