Up to index of Isabelle/HOL/jsr
theory BVSpec = Effect:(* Title: HOL/MicroJava/BV/BVSpec.thy ID: $Id: BVSpec.html,v 1.1 2002/11/28 14:17:20 kleing Exp $ Author: Cornelia Pusch, Gerwin Klein Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{The Bytecode Verifier}\label{sec:BVSpec} *} theory BVSpec = Effect: text {* This theory contains a specification of the BV. The specification describes correct typings of method bodies; it corresponds to type \emph{checking}. *} constdefs -- "The method type only contains declared classes:" check_types :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state list \<Rightarrow> bool" "check_types G mxs mxr mpc phi \<equiv> set phi \<subseteq> states G mxs mxr mpc" -- "An instruction is welltyped if it is applicable and its effect" -- "is compatible with the type at all successor instructions:" wt_instr :: "[instr,jvm_prog,cname,ty,method_type,nat,bool, p_count,exception_table,p_count] \<Rightarrow> bool" "wt_instr i G C rT phi mxs ini max_pc et pc \<equiv> app i G C pc mxs max_pc rT ini et (phi!pc) \<and> (\<forall>(pc',s') \<in> set (eff i G pc et (phi!pc)). pc' < max_pc \<and> s' \<subseteq> phi!pc')" -- {* The type at @{text "pc=0"} conforms to the method calling convention: *} wt_start :: "[jvm_prog,cname,mname,ty list,nat,method_type] \<Rightarrow> bool" "wt_start G C mn pTs mxl phi \<equiv> let this = OK (if mn = init \<and> C \<noteq> Object then PartInit C else Init (Class C)); start = (([],this#(map OK (map Init pTs))@(replicate mxl Err)),C=Object) in start \<in> phi!0" -- "A method is welltyped if the body is not empty, if execution does not" -- "leave the body, if the method type covers all instructions and mentions" -- "declared classes only, if the method calling convention is respected, and" -- "if all instructions are welltyped." wt_method :: "[jvm_prog,cname,mname,ty list,ty,nat,nat, instr list,exception_table,method_type] \<Rightarrow> bool" "wt_method G C mn pTs rT mxs mxl ins et phi \<equiv> let max_pc = length ins in 0 < max_pc \<and> length phi = length ins \<and> check_types G mxs (1+length pTs+mxl) max_pc (map OK phi) \<and> wt_start G C mn pTs mxl phi \<and> (\<forall>pc. pc<max_pc \<longrightarrow> wt_instr (ins!pc) G C rT phi mxs (mn=init) max_pc et pc)" wt_jvm_prog :: "[jvm_prog,prog_type] \<Rightarrow> bool" "wt_jvm_prog G phi \<equiv> wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_method G C (fst sig) (snd sig) rT maxs maxl b et (phi C sig)) G" lemma wt_jvm_progD: "wt_jvm_prog G phi \<Longrightarrow> (\<exists>wt. wf_prog wt G)" by (unfold wt_jvm_prog_def, blast) lemma wt_jvm_prog_impl_wt_instr: "\<lbrakk> wt_jvm_prog G phi; is_class G C; method (G,C) sig = Some (C,rT,maxs,maxl,ins,et); pc < length ins \<rbrakk> \<Longrightarrow> wt_instr (ins!pc) G C rT (phi C sig) maxs (fst sig=init) (length ins) et pc"; by (unfold wt_jvm_prog_def, drule method_wf_mdecl, simp, simp, simp add: wf_mdecl_def wt_method_def) lemma wt_jvm_prog_impl_wt_start: "\<lbrakk> wt_jvm_prog G phi; is_class G C; method (G,C) sig = Some (C,rT,maxs,maxl,ins,et) \<rbrakk> \<Longrightarrow> 0 < (length ins) \<and> wt_start G C (fst sig) (snd sig) maxl (phi C sig)" by (unfold wt_jvm_prog_def, drule method_wf_mdecl, simp, simp, simp add: wf_mdecl_def wt_method_def) end
lemma wt_jvm_progD:
wt_jvm_prog G phi ==> EX wt. wf_prog wt G
lemma wt_jvm_prog_impl_wt_instr:
[| wt_jvm_prog G phi; is_class G C; method (G, C) sig = Some (C, rT, maxs, maxl, ins, et); pc < length ins |] ==> wt_instr (ins ! pc) G C rT (phi C sig) maxs (fst sig = init) (length ins) et pc
lemma wt_jvm_prog_impl_wt_start:
[| wt_jvm_prog G phi; is_class G C; method (G, C) sig = Some (C, rT, maxs, maxl, ins, et) |] ==> 0 < length ins & wt_start G C (fst sig) (snd sig) maxl (phi C sig)