Up to index of Isabelle/HOL/jsr
theory Effect = JVMType + JVMExec:(* Title: HOL/MicroJava/BV/Effect.thy ID: $Id: Effect.html,v 1.1 2002/11/28 14:17:20 kleing Exp $ Author: Gerwin Klein Copyright 2000 Technische Universitaet Muenchen *) header {* \isaheader{Effect of Instructions on the State Type} *} theory Effect = JVMType + JVMExec: types succ_type = "(p_count × address_type) list" consts the_RA :: "init_ty err \<Rightarrow> nat" recdef the_RA "{}" "the_RA (OK (Init (RA pc))) = pc" constdefs theRA :: "nat \<Rightarrow> state_bool \<Rightarrow> nat" "theRA x s \<equiv> the_RA (snd (fst s)!x)" text {* Program counter of successor instructions: *} consts succs :: "instr \<Rightarrow> p_count \<Rightarrow> address_type \<Rightarrow> p_count list" primrec "succs (Load idx) pc s = [pc+1]" "succs (Store idx) pc s = [pc+1]" "succs (LitPush v) pc s = [pc+1]" "succs (Getfield F C) pc s = [pc+1]" "succs (Putfield F C) pc s = [pc+1]" "succs (New C) pc s = [pc+1]" "succs (Checkcast C) pc s = [pc+1]" "succs Pop pc s = [pc+1]" "succs Dup pc s = [pc+1]" "succs Dup_x1 pc s = [pc+1]" "succs Dup_x2 pc s = [pc+1]" "succs Swap pc s = [pc+1]" "succs IAdd pc s = [pc+1]" "succs (Ifcmpeq b) pc s = [pc+1, nat (int pc + b)]" "succs (Goto b) pc s = [nat (int pc + b)]" "succs Return pc s = []" "succs (Invoke C mn fpTs) pc s = [pc+1]" "succs (Invoke_special C mn fpTs) pc s = [pc+1]" "succs Throw pc s = []" "succs (Jsr b) pc s = [nat (int pc + b)]" "succs (Ret x) pc s = (SOME l. set l = theRA x ` s)" consts theClass :: "init_ty \<Rightarrow> ty" primrec "theClass (PartInit C) = Class C" "theClass (UnInit C pc) = Class C" text "Effect of instruction on the state type:" consts eff' :: "instr × jvm_prog × p_count × state_type \<Rightarrow> state_type" recdef eff' "{}" "eff' (Load idx, G, pc, (ST, LT)) = (ok_val (LT ! idx) # ST, LT)" "eff' (Store idx, G, pc, (ts#ST, LT)) = (ST, LT[idx:= OK ts])" "eff' (LitPush v, G, pc, (ST, LT)) = (Init (the (typeof (\<lambda>v. None) v))#ST, LT)" "eff' (Getfield F C, G, pc, (oT#ST, LT)) = (Init (snd (the (field (G,C) F)))#ST, LT)" "eff' (Putfield F C, G, pc, (vT#oT#ST, LT)) = (ST,LT)" "eff' (New C, G, pc, (ST,LT)) = (UnInit C pc # ST, replace (OK (UnInit C pc)) Err LT)" "eff' (Checkcast C,G,pc,(Init (RefT t)#ST,LT)) = (Init (Class C) # ST,LT)" "eff' (Pop, G, pc, (ts#ST,LT)) = (ST,LT)" "eff' (Dup, G, pc, (ts#ST,LT)) = (ts#ts#ST,LT)" "eff' (Dup_x1, G, pc, (ts1#ts2#ST,LT)) = (ts1#ts2#ts1#ST,LT)" "eff' (Dup_x2, G, pc, (ts1#ts2#ts3#ST,LT)) = (ts1#ts2#ts3#ts1#ST,LT)" "eff' (Swap, G, pc, (ts1#ts2#ST,LT)) = (ts2#ts1#ST,LT)" "eff' (IAdd, G, pc, (t1#t2#ST,LT)) = (Init (PrimT Integer)#ST,LT)" "eff' (Ifcmpeq b, G, pc, (ts1#ts2#ST,LT)) = (ST,LT)" "eff' (Goto b, G, pc, s) = s" -- "Return has no successor instruction in the same method:" "eff' (Return, G, pc, s) = s" -- "Throw always terminates abruptly:" "eff' (Throw, G, pc, s) = s" "eff' (Jsr t, G, pc, (ST,LT)) = ((Init (RA (pc+1)))#ST,LT)" "eff' (Ret x, G, pc, s) = s" "eff' (Invoke C mn fpTs, G, pc, (ST,LT)) = (let ST' = drop (length fpTs) ST; X = hd ST'; ST'' = tl ST'; rT = fst (snd (the (method (G,C) (mn,fpTs)))) in ((Init rT)#ST'', LT))" "eff' (Invoke_special C mn fpTs, G, pc, (ST,LT)) = (let ST' = drop (length fpTs) ST; X = hd ST'; N = Init (theClass X); ST'' = replace X N (tl ST'); LT' = replace (OK X) (OK N) LT; rT = fst (snd (the (method (G,C) (mn,fpTs)))) in ((Init rT)#ST'', LT'))" text {* For @{term Invoke_special} only: mark when invoking a constructor on a partly initialized class. app will check that we call the right constructor. *} constdefs eff_bool :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> state_bool \<Rightarrow> state_bool" "eff_bool i G pc == \<lambda>((ST,LT),z). (eff'(i,G,pc,(ST,LT)), if \<exists>C p D. i = Invoke_special C init p \<and> ST!length p = PartInit D then True else z)" text {* For exception handling: *} consts match_any :: "jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list" primrec "match_any G pc [] = []" "match_any G pc (e#es) = (let (start_pc, end_pc, handler_pc, catch_type) = e; es' = match_any G pc es in if start_pc <= pc \<and> pc < end_pc then catch_type#es' else es')" consts match :: "jvm_prog \<Rightarrow> cname \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list" primrec "match G X pc [] = []" "match G X pc (e#es) = (if match_exception_entry G X pc e then [X] else match G X pc es)" lemma match_some_entry: "match G X pc et = (if \<exists>e \<in> set et. match_exception_entry G X pc e then [X] else [])" by (induct et) auto consts xcpt_names :: "instr × jvm_prog × p_count × exception_table \<Rightarrow> cname list" recdef xcpt_names "{}" "xcpt_names (Getfield F C, G, pc, et) = match G (Xcpt NullPointer) pc et" "xcpt_names (Putfield F C, G, pc, et) = match G (Xcpt NullPointer) pc et" "xcpt_names (New C, G, pc, et) = match G (Xcpt OutOfMemory) pc et" "xcpt_names (Checkcast C, G, pc, et) = match G (Xcpt ClassCast) pc et" "xcpt_names (Throw, G, pc, et) = match_any G pc et" "xcpt_names (Invoke C m p, G, pc, et) = match_any G pc et" "xcpt_names (Invoke_special C m p, G, pc, et) = match_any G pc et" "xcpt_names (i, G, pc, et) = []" consts theIdx :: "instr \<Rightarrow> nat" primrec "theIdx (Load idx) = idx" "theIdx (Store idx) = idx" "theIdx (Ret idx) = idx" constdefs xcpt_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> address_type \<Rightarrow> exception_table \<Rightarrow> succ_type" "xcpt_eff i G pc at et \<equiv> map (\<lambda>C. (the (match_exception_table G C pc et), (\<lambda>s. (([Init (Class C)], snd (fst s)),snd s))`at )) (xcpt_names (i,G,pc,et))" norm_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> p_count \<Rightarrow> address_type \<Rightarrow> address_type" "norm_eff i G pc pc' at \<equiv> (eff_bool i G pc) ` (if \<exists>idx. i = Ret idx then {s. s\<in>at \<and> pc' = theRA (theIdx i) s} else at)" text {* Putting it all together: *} constdefs eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> address_type \<Rightarrow> succ_type" "eff i G pc et at \<equiv> (map (\<lambda>pc'. (pc',norm_eff i G pc pc' at)) (succs i pc at)) @ (xcpt_eff i G pc at et)" text {* Some small helpers for direct executability *} constdefs isPrimT :: "ty \<Rightarrow> bool" "isPrimT T \<equiv> case T of PrimT T' \<Rightarrow> True | RefT T' \<Rightarrow> False" isRefT :: "ty \<Rightarrow> bool" "isRefT T \<equiv> case T of PrimT T' \<Rightarrow> False | RefT T' \<Rightarrow> True" lemma isPrimT [simp]: "isPrimT T = (\<exists>T'. T = PrimT T')" by (simp add: isPrimT_def split: ty.splits) lemma isRefT [simp]: "isRefT T = (\<exists>T'. T = RefT T')" by (simp add: isRefT_def split: ty.splits) text "Conditions under which eff is applicable:" consts app' :: "instr × jvm_prog × cname × p_count × nat × ty × state_type \<Rightarrow> bool" recdef app' "{}" "app' (Load idx, G, C', pc, maxs, rT, s) = (idx < length (snd s) \<and> (snd s) ! idx \<noteq> Err \<and> length (fst s) < maxs)" "app' (Store idx, G, C', pc, maxs, rT, (ts#ST, LT)) = (idx < length LT)" "app' (LitPush v, G, C', pc, maxs, rT, s) = (length (fst s) < maxs \<and> typeof (\<lambda>t. None) v \<in> {Some NT} \<union> (Some\<circ>PrimT)`{Boolean,Void,Integer})" "app' (Getfield F C, G, C', pc, maxs, rT, (oT#ST, LT)) = (is_class G C \<and> field (G,C) F \<noteq> None \<and> fst (the (field (G,C) F)) = C \<and> G \<turnstile> oT \<preceq>i Init (Class C))" "app' (Putfield F C, G, C', pc, maxs, rT, (vT#oT#ST, LT)) = (is_class G C \<and> field (G,C) F \<noteq> None \<and> fst (the (field (G,C) F)) = C \<and> G \<turnstile> oT \<preceq>i Init (Class C) \<and> G \<turnstile> vT \<preceq>i Init (snd (the (field (G,C) F))))" "app' (New C, G, C', pc, maxs, rT, s) = (is_class G C \<and> length (fst s) < maxs \<and> UnInit C pc \<notin> set (fst s))" "app' (Checkcast C, G, C', pc, maxs, rT, (Init (RefT rt)#ST,LT)) = is_class G C" "app' (Pop, G, C', pc, maxs, rT, (ts#ST,LT)) = True" "app' (Dup, G, C', pc, maxs, rT, (ts#ST,LT)) = (1+length ST < maxs)" "app' (Dup_x1, G, C', pc, maxs, rT, (ts1#ts2#ST,LT)) = (2+length ST < maxs)" "app' (Dup_x2, G, C', pc, maxs, rT, (ts1#ts2#ts3#ST,LT)) = (3+length ST < maxs)" "app' (Swap, G, C', pc, maxs, rT, (ts1#ts2#ST,LT)) = True" "app' (IAdd, G, C', pc, maxs, rT, (t1#t2#ST,LT)) = (t1 = Init (PrimT Integer) \<and> t1 = t2)" "app' (Ifcmpeq b, G, C', pc, maxs, rT, (Init ts#Init ts'#ST,LT)) = (0 \<le> int pc + b \<and> (isPrimT ts \<longrightarrow> ts' = ts) \<and> (isRefT ts \<longrightarrow> isRefT ts'))" "app' (Goto b, G, C', pc, maxs, rT, s) = (0 \<le> int pc + b)" "app' (Return, G, C', pc, maxs, rT, (T#ST,LT)) = (G \<turnstile> T \<preceq>i Init rT)" "app' (Throw, G, C', pc, maxs, rT, (Init T#ST,LT)) = isRefT T" "app' (Jsr b, G, C', pc, maxs, rT, (ST,LT)) = (0 \<le> int pc + b \<and> length ST < maxs)" "app' (Ret x, G, C', pc, maxs, rT, (ST,LT)) = (x < length LT \<and> (\<exists>r. LT!x=OK (Init (RA r))))" "app' (Invoke C mn fpTs, G, C', pc, maxs, rT, s) = (length fpTs < length (fst s) \<and> mn \<noteq> init \<and> (let apTs = rev (take (length fpTs) (fst s)); X = hd (drop (length fpTs) (fst s)) in is_class G C \<and> list_all2 (\<lambda>aT fT. G \<turnstile> aT \<preceq>i (Init fT)) apTs fpTs \<and> G \<turnstile> X \<preceq>i Init (Class C)) \<and> method (G,C) (mn,fpTs) \<noteq> None)" "app' (Invoke_special C mn fpTs, G, C', pc, maxs, rT, s) = (length fpTs < length (fst s) \<and> mn = init \<and> (let apTs = rev (take (length fpTs) (fst s)); X = (fst s)!length fpTs in is_class G C \<and> list_all2 (\<lambda>aT fT. G \<turnstile> aT \<preceq>i (Init fT)) apTs fpTs \<and> (\<exists>rT' b. method (G,C) (mn,fpTs) = Some (C,rT',b)) \<and> ((\<exists>pc. X = UnInit C pc) \<or> (X = PartInit C' \<and> G \<turnstile> C' \<prec>C1 C))))" -- "@{text C'} is the current class, the constructor must be called on the" -- "superclass (if partly initialized) or on the exact class that is" -- "to be constructed (if not yet initialized at all)." -- "In JCVM @{text Invoke_special} may also call another constructor of the same" -- {* class (@{text "C = C' \<or> C = super C'"}) *} "app' (i,G,pc,maxs,rT,s) = False" constdefs xcpt_app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> bool" "xcpt_app i G pc et \<equiv> \<forall>C\<in>set(xcpt_names (i,G,pc,et)). is_class G C" constdefs app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> cname \<Rightarrow> p_count \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> address_type \<Rightarrow> bool" "app i G C' pc mxs mpc rT ini et at \<equiv> (\<forall>(s,z) \<in> at. xcpt_app i G pc et \<and> app' (i,G,C',pc,mxs,rT,s) \<and> (ini \<and> i = Return \<longrightarrow> z) \<and> (\<forall>C m p. i = Invoke_special C m p \<and> (fst s)!length p = PartInit C' \<longrightarrow> ¬z)) \<and> (\<forall>(pc',s') \<in> set (eff i G pc et at). pc' < mpc)" lemma match_any_match_table: "C \<in> set (match_any G pc et) \<Longrightarrow> match_exception_table G C pc et \<noteq> None" apply (induct et) apply simp apply simp apply clarify apply (simp split: split_if_asm) apply (auto simp add: match_exception_entry_def) done lemma match_X_match_table: "C \<in> set (match G X pc et) \<Longrightarrow> match_exception_table G C pc et \<noteq> None" apply (induct et) apply simp apply (simp split: split_if_asm) done lemma xcpt_names_in_et: "C \<in> set (xcpt_names (i,G,pc,et)) \<Longrightarrow> \<exists>e \<in> set et. the (match_exception_table G C pc et) = fst (snd (snd e))" apply (cases i) apply (auto dest!: match_any_match_table match_X_match_table dest: match_exception_table_in_et) done lemma length_casesE1: "((xs,y),z) \<in> at \<Longrightarrow> (xs =[] \<Longrightarrow> P []) \<Longrightarrow> (\<And>l. xs = [l] \<Longrightarrow> P [l]) \<Longrightarrow> (\<And>l l'. xs = [l,l'] \<Longrightarrow> P [l,l']) \<Longrightarrow> (\<And>l l' ls. xs = l#l'#ls \<Longrightarrow> P (l#l'#ls)) \<Longrightarrow> P xs" apply (cases xs) apply auto apply (rename_tac ls) apply (case_tac ls) apply auto done lemmas [simp] = app_def xcpt_app_def text {* \medskip simp rules for @{term app} *} lemma appNone[simp]: "app i G C' pc maxs mpc rT ini et {} = (\<forall>(pc',s')\<in>set (eff i G pc et {}). pc' < mpc)" by simp lemmas eff_defs [simp] = eff_def norm_eff_def eff_bool_def xcpt_eff_def lemma appLoad[simp]: "app (Load idx) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. (\<exists>ST LT z. s = ((ST,LT),z) \<and> idx < length LT \<and> LT!idx \<noteq> Err \<and> length ST < maxs)))" by auto lemma appStore[simp]: "app (Store idx) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ts ST LT z. s = ((ts#ST,LT),z) \<and> idx < length LT))" apply auto apply (auto dest!: bspec elim!: length_casesE1) done lemma appLitPush[simp]: "app (LitPush v) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ST LT z. s = ((ST,LT),z) \<and> length ST < maxs \<and> typeof (\<lambda>v. None) v \<in> {Some NT} \<union> (Some\<circ>PrimT)`{Void,Boolean,Integer}))" by auto lemma appGetField[simp]: "app (Getfield F C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>x \<in> set (match G (Xcpt NullPointer) pc et). the (match_exception_table G x pc et) < mpc) \<and> (\<forall>s \<in> at. \<exists>oT vT ST LT z. s = ((oT#ST, LT),z) \<and> is_class G C \<and> field (G,C) F = Some (C,vT) \<and> G \<turnstile> oT \<preceq>i (Init (Class C)) \<and> (\<forall>x \<in> set (match G (Xcpt NullPointer) pc et). is_class G x)))" apply rule defer apply (clarsimp, (drule bspec, assumption)?)+ apply (auto elim!: length_casesE1) done lemma appPutField[simp]: "app (Putfield F C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>x \<in> set (match G (Xcpt NullPointer) pc et). the (match_exception_table G x pc et) < mpc) \<and> (\<forall>s \<in> at. \<exists>vT vT' oT ST LT z. s = ((vT#oT#ST, LT),z) \<and> is_class G C \<and> field (G,C) F = Some (C, vT') \<and> G \<turnstile> oT \<preceq>i Init (Class C) \<and> G \<turnstile> vT \<preceq>i Init vT' \<and> (\<forall>x \<in> set (match G (Xcpt NullPointer) pc et). is_class G x)))" apply rule defer apply (clarsimp, (drule bspec, assumption)?)+ apply (auto elim!: length_casesE1) done lemma appNew[simp]: "app (New C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>x \<in> set (match G (Xcpt OutOfMemory) pc et). the (match_exception_table G x pc et) < mpc) \<and> (\<forall>s \<in> at. \<exists>ST LT z. s=((ST,LT),z) \<and> is_class G C \<and> length ST < maxs \<and> UnInit C pc \<notin> set ST \<and> (\<forall>x \<in> set (match G (Xcpt OutOfMemory) pc et). is_class G x)))" by auto lemma appCheckcast[simp]: "app (Checkcast C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>x \<in> set (match G (Xcpt ClassCast) pc et). the (match_exception_table G x pc et) < mpc) \<and> (\<forall>s \<in> at. \<exists>rT ST LT z. s = ((Init (RefT rT)#ST,LT),z) \<and> is_class G C \<and> (\<forall>x \<in> set (match G (Xcpt ClassCast) pc et). is_class G x)))" apply rule apply clarsimp defer apply clarsimp apply (drule bspec, assumption) apply clarsimp apply (drule bspec, assumption) apply clarsimp apply (case_tac a) apply auto apply (case_tac aa) apply auto apply (case_tac ty) apply auto apply (case_tac aa) apply auto apply (case_tac ty) apply auto done lemma appPop[simp]: "app Pop G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ts ST LT z. s = ((ts#ST,LT),z)))" by auto (auto dest!: bspec elim!: length_casesE1) lemma appDup[simp]: "app Dup G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ts ST LT z. s = ((ts#ST,LT),z) \<and> 1+length ST < maxs))" by auto (auto dest!: bspec elim!: length_casesE1) lemma appDup_x1[simp]: "app Dup_x1 G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ts1 ts2 ST LT z. s = ((ts1#ts2#ST,LT),z) \<and> 2+length ST < maxs))" by auto (auto dest!: bspec elim!: length_casesE1) lemma appDup_x2[simp]: "app Dup_x2 G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ts1 ts2 ts3 ST LT z. s = ((ts1#ts2#ts3#ST,LT),z) \<and> 3+length ST < maxs))" apply auto apply (auto dest!: bspec elim!: length_casesE1) apply (case_tac ls, auto) done lemma appSwap[simp]: "app Swap G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ts1 ts2 ST LT z. s = ((ts1#ts2#ST,LT),z)))" by auto (auto dest!: bspec elim!: length_casesE1) lemma appIAdd[simp]: "app IAdd G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> (\<forall>s \<in> at. \<exists>ST LT z. s = ((Init (PrimT Integer)#Init (PrimT Integer)#ST,LT),z)))" by auto (auto dest!: bspec elim!: length_casesE1) lemma appIfcmpeq[simp]: "app (Ifcmpeq b) G C' pc maxs mpc rT ini et at = (Suc pc < mpc \<and> nat (int pc+b) < mpc \<and> (\<forall>s \<in> at. \<exists>ts1 ts2 ST LT z. s = ((Init ts1#Init ts2#ST,LT),z) \<and> 0 \<le> b + int pc \<and> ((\<exists>p. ts1 = PrimT p \<and> ts2 = PrimT p) \<or> (\<exists>r r'. ts1 = RefT r \<and> ts2 = RefT r'))))" apply auto apply (auto dest!: bspec) apply (case_tac aa, simp) apply (case_tac list) apply (case_tac a, simp, simp, simp) apply (case_tac a) apply simp apply (case_tac ab) apply auto apply (case_tac ty, auto) apply (case_tac ty, auto) apply (case_tac ty, auto) apply (case_tac ty, auto) apply (case_tac ty, auto) done lemma appReturn[simp]: "app Return G C' pc maxs mpc rT ini et at = (\<forall>s \<in> at. \<exists>T ST LT z. s = ((T#ST,LT),z) \<and> (G \<turnstile> T \<preceq>i Init rT) \<and> (ini \<longrightarrow> z))" apply auto apply (auto dest!: bspec) apply (erule length_casesE1) apply auto apply (erule length_casesE1) apply auto done lemma appGoto[simp]: "app (Goto b) G C' pc maxs mpc rT ini et at = (nat (int pc + b) < mpc \<and> (at \<noteq> {} \<longrightarrow> 0 \<le> int pc + b))" by auto lemma appThrow[simp]: "app Throw G C' pc maxs mpc rT ini et at = ((\<forall>C \<in> set (match_any G pc et). the (match_exception_table G C pc et) < mpc) \<and> (\<forall>s \<in> at. \<exists>ST LT z r. s=((Init (RefT r)#ST,LT),z) \<and> (\<forall>C \<in> set (match_any G pc et). is_class G C)))" apply auto apply (drule bspec, assumption) apply clarsimp apply (case_tac a) apply auto apply (case_tac aa) apply auto done lemma appJsr[simp]: "app (Jsr b) G C' pc maxs mpc rT ini et at = (nat (int pc + b) < mpc \<and> (\<forall>s \<in> at. \<exists>ST LT z. s = ((ST,LT),z) \<and> 0 \<le> int pc + b \<and> length ST < maxs))" by auto lemma set_SOME_lists: "finite s \<Longrightarrow> set (SOME l. set l = s) = s" apply (erule finite_induct) apply simp apply (rule_tac a="x#(SOME l. set l = F)" in someI2) apply auto done lemma appRet[simp]: "finite at \<Longrightarrow> app (Ret x) G C' pc maxs mpc rT ini et at = (\<forall>s \<in> at. \<exists>ST LT z. s = ((ST,LT),z) \<and> x < length LT \<and> (\<exists>r. LT!x=OK (Init (RA r)) \<and> r < mpc))" apply (auto simp add: set_SOME_lists finite_imageI theRA_def) apply (drule bspec, assumption)+ apply simp apply (drule bspec, assumption)+ apply auto done lemma appInvoke[simp]: "app (Invoke C mn fpTs) G C' pc maxs mpc rT ini et at = ((Suc pc < mpc \<and> (\<forall>C \<in> set (match_any G pc et). the (match_exception_table G C pc et) < mpc)) \<and> (\<forall>s \<in> at. \<exists>apTs X ST LT mD' rT' b' z. s = (((rev apTs) @ (X # ST), LT), z) \<and> mn \<noteq> init \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT,fT)\<in>set(zip apTs fpTs). G \<turnstile> aT \<preceq>i (Init fT)) \<and> method (G,C) (mn,fpTs) = Some (mD', rT', b') \<and> (G \<turnstile> X \<preceq>i Init (Class C)) \<and> (\<forall>C \<in> set (match_any G pc et). is_class G C)))" (is "?app at = (?Q \<and> (\<forall>s \<in> at. ?P s))") proof - note list_all2_def[simp] { fix a b z assume app: "?app at" and at: "((a,b),z) \<in> at" have "?P ((a,b),z)" proof - from app and at have "a = (rev (rev (take (length fpTs) a))) @ (drop (length fpTs) a) \<and> length fpTs < length a" (is "?a \<and> ?l") by (auto simp add: app_def) hence "?a \<and> 0 < length (drop (length fpTs) a)" (is "?a \<and> ?l") by auto hence "?a \<and> ?l \<and> length (rev (take (length fpTs) a)) = length fpTs" by (auto simp add: min_def) then obtain apTs ST where "a = rev apTs @ ST \<and> length apTs = length fpTs \<and> 0 < length ST" by blast hence "a = rev apTs @ ST \<and> length apTs = length fpTs \<and> ST \<noteq> []" by blast then obtain X ST' where "a = rev apTs @ X # ST'" "length apTs = length fpTs" by (simp add: neq_Nil_conv) blast with app and at show ?thesis by fastsimp qed } note x = this have "?app at \<Longrightarrow> (\<forall>s \<in> at. ?P s)" by clarify (rule x) hence "?app at \<Longrightarrow> ?Q \<and> (\<forall>s \<in> at. ?P s)" by auto moreover have "?Q \<and> (\<forall>s \<in> at. ?P s) \<Longrightarrow> ?app at" apply clarsimp apply (drule bspec, assumption) apply (clarsimp simp add: min_def) done ultimately show ?thesis by (rule iffI) qed lemma appInvoke_special[simp]: "app (Invoke_special C mn fpTs) G C' pc maxs mpc rT ini et at = ((Suc pc < mpc \<and> (\<forall>C \<in> set (match_any G pc et). the (match_exception_table G C pc et) < mpc)) \<and> (\<forall>s \<in> at. \<exists>apTs X ST LT rT' b' z. s = (((rev apTs) @ X # ST, LT), z) \<and> mn = init \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT,fT)\<in>set(zip apTs fpTs). G \<turnstile> aT \<preceq>i (Init fT)) \<and> method (G,C) (mn,fpTs) = Some (C, rT', b') \<and> ((\<exists>pc. X = UnInit C pc) \<or> (X = PartInit C' \<and> G \<turnstile> C' \<prec>C1 C \<and> ¬z)) \<and> (\<forall>C \<in> set (match_any G pc et). is_class G C)))" (is "?app at = (?Q \<and> (\<forall>s \<in> at. ?P s))") proof - note list_all2_def [simp] { fix a b z assume app: "?app at" and at: "((a,b),z) \<in> at" have "?P ((a,b),z)" proof - from app and at have "a = (rev (rev (take (length fpTs) a))) @ (drop (length fpTs) a) \<and> length fpTs < length a" (is "?a \<and> ?l") by (auto simp add: app_def) hence "?a \<and> 0 < length (drop (length fpTs) a)" (is "?a \<and> ?l") by auto hence "?a \<and> ?l \<and> length (rev (take (length fpTs) a)) = length fpTs" by (auto simp add: min_def) then obtain apTs ST where "a = rev apTs @ ST \<and> length apTs = length fpTs \<and> 0 < length ST" by blast hence "a = rev apTs @ ST \<and> length apTs = length fpTs \<and> ST \<noteq> []" by blast then obtain X ST' where "a = rev apTs @ X # ST'" "length apTs = length fpTs" by (simp add: neq_Nil_conv) blast with app and at show ?thesis by (fastsimp simp add: nth_append) qed } note x = this have "?app at \<Longrightarrow> \<forall>s \<in> at. ?P s" by clarify (rule x) hence "?app at \<Longrightarrow> ?Q \<and> (\<forall>s \<in> at. ?P s)" by auto moreover have "?Q \<and> (\<forall>s \<in> at. ?P s) \<Longrightarrow> ?app at" apply clarsimp apply (drule bspec, assumption) apply (fastsimp simp add: nth_append min_def) done ultimately show ?thesis by (rule iffI) qed lemma replace_map_OK: "replace (OK x) (OK y) (map OK l) = map OK (replace x y l)" proof - have "inj OK" by (blast intro: datatype_injI) thus ?thesis by (rule replace_map) qed lemma effNone: "(pc', s') \<in> set (eff i G pc et {}) \<Longrightarrow> s' = {}" by (auto simp add: eff_def xcpt_eff_def norm_eff_def split: split_if_asm) lemmas app_simps = appNone appLoad appStore appLitPush appGetField appPutField appNew appCheckcast appPop appDup appDup_x1 appDup_x2 appSwap appIAdd appIfcmpeq appReturn appGoto appThrow appJsr appRet appInvoke appInvoke_special section "Code generator setup" declare list_all2_Nil [code] declare list_all2_Cons [code] lemma xcpt_app_lemma [code]: "xcpt_app i G pc et = list_all (is_class G) (xcpt_names (i, G, pc, et))" by (simp add: list_all_conv) constdefs set_filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" "set_filter P A \<equiv> {s. s \<in> A \<and> P s}" tolist :: "'a set \<Rightarrow> 'a list" "tolist s \<equiv> (SOME l. set l = s)" lemma [code]: "succs (Ret x) pc s = tolist (theRA x ` s)" apply (simp add: tolist_def) done consts isRet :: "instr \<Rightarrow> bool" recdef isRet "{}" "isRet (Ret r) = True" "isRet i = False" lemma [code]: "norm_eff i G pc pc' at = eff_bool i G pc ` (if isRet i then set_filter (\<lambda>s. pc' = theRA (theIdx i) s) at else at)" apply (cases i) apply (auto simp add: norm_eff_def set_filter_def) done consts_code "set_filter" ("filter") "tolist" ("(fn x => x)") lemma [code]: "app' (Ifcmpeq b, G, C', pc, maxs, rT, Init ts # Init ts' # ST, LT) = (0 \<le> int pc + b \<and> (if isPrimT ts then ts' = ts else True) \<and> (if isRefT ts then isRefT ts' else True))" apply simp done consts isUninitC :: "init_ty \<Rightarrow> cname \<Rightarrow> bool" primrec "isUninitC (Init T) C = False" "isUninitC (UnInit C' pc) C = (C=C')" "isUninitC (PartInit D) C = False" lemma [code]: "app' (Invoke_special C mn fpTs, G, C', pc, maxs, rT, s) = (length fpTs < length (fst s) \<and> mn = init \<and> (let apTs = rev (take (length fpTs) (fst s)); X = fst s ! length fpTs in is_class G C \<and> list_all2 (\<lambda>aT fT. G \<turnstile> aT \<preceq>i Init fT) apTs fpTs \<and> method (G, C) (mn, fpTs) \<noteq> None \<and> (let (C'', rT', b) = the (method (G, C) (mn, fpTs)) in C = C'' \<and> (isUninitC X C \<or> X = PartInit C' \<and> G \<turnstile> C' \<prec>C1 C))))" apply auto apply (cases "fst s ! length fpTs") apply auto apply (cases "fst s ! length fpTs") apply auto done consts isOKInitRA :: "init_ty err \<Rightarrow> bool" recdef isOKInitRA "{}" "isOKInitRA (OK (Init (RA r))) = True" "isOKInitRA z = False" lemma [code]: "app' (Ret x, G, C', pc, maxs, rT, ST, LT) = (x < length LT \<and> isOKInitRA (LT!x))" apply simp apply auto apply (cases "LT!x") apply simp apply simp apply (case_tac a) apply auto apply (case_tac ty) apply auto apply (case_tac prim_ty) apply auto done consts isInv_spcl :: "instr \<Rightarrow> bool" recdef isInv_spcl "{}" "isInv_spcl (Invoke_special C m p) = True" "isInv_spcl i = False" consts mNam :: "instr \<Rightarrow> mname" recdef mNam "{}" "mNam (Invoke_special C m p) = m" consts pLen :: "instr \<Rightarrow> nat" recdef pLen "{}" "pLen (Invoke_special C m p) = length p" consts isPartInit :: "init_ty \<Rightarrow> bool" recdef isPartInit "{}" "isPartInit (PartInit D) = True" "isPartInit T = False" lemma [code]: "app i G C' pc mxs mpc rT ini et at = ((\<forall>(s, z)\<in>at. xcpt_app i G pc et \<and> app' (i, G, C', pc, mxs, rT, s) \<and> (if ini \<and> i = Return then z else True) \<and> (if isInv_spcl i \<and> fst s ! (pLen i) = PartInit C' then ¬ z else True)) \<and> (\<forall>(pc', s')\<in>set (eff i G pc et at). pc' < mpc))" apply (simp add: split_beta app_def) apply (cases i) apply auto done lemma [code]: "eff_bool i G pc = (\<lambda>((ST, LT), z). (eff' (i, G, pc, ST, LT), if isInv_spcl i \<and> mNam i = init \<and> isPartInit(ST ! (pLen i)) then True else z))" apply (auto simp add: eff_bool_def split_def) apply (cases i) apply auto apply (rule ext) apply auto apply (case_tac "a!length list") apply auto done lemmas [simp del] = app_def xcpt_app_def end
lemma match_some_entry:
match G X pc et = (if Bex (set et) (match_exception_entry G X pc) then [X] else [])
lemma isPrimT:
isPrimT T = (EX T'. T = PrimT T')
lemma isRefT:
isRefT T = (EX T'. T = RefT T')
lemma match_any_match_table:
C : set (match_any G pc et) ==> match_exception_table G C pc et ~= None
lemma match_X_match_table:
C : set (match G X pc et) ==> match_exception_table G C pc et ~= None
lemma xcpt_names_in_et:
C : set (xcpt_names (i, G, pc, et)) ==> EX e:set et. the (match_exception_table G C pc et) = fst (snd (snd e))
lemma length_casesE1:
[| ((xs, y), z) : at; xs = [] ==> P []; !!l. xs = [l] ==> P [l]; !!l l'. xs = [l, l'] ==> P [l, l']; !!l l' ls. xs = l # l' # ls ==> P (l # l' # ls) |] ==> P xs
lemmas
app i G C' pc mxs mpc rT ini et at == (ALL (s, z):at. xcpt_app i G pc et & app' (i, G, C', pc, mxs, rT, s) & (ini & i = Return --> z) & (ALL C m p. i = Invoke_special C m p & fst s ! length p = PartInit C' --> ¬ z)) & (ALL (pc', s'):set (eff i G pc et at). pc' < mpc)
xcpt_app i G pc et == Ball (set (xcpt_names (i, G, pc, et))) (is_class G)
lemma appNone:
app i G C' pc maxs mpc rT ini et {} = (ALL (pc', s'):set (eff i G pc et {}). pc' < mpc)
lemmas eff_defs:
eff i G pc et at == map (%pc'. (pc', norm_eff i G pc pc' at)) (succs i pc at) @ xcpt_eff i G pc at et
norm_eff i G pc pc' at == eff_bool i G pc ` (if EX idx. i = Ret idx then {s. s : at & pc' = theRA (theIdx i) s} else at)
eff_bool i G pc == %((ST, LT), z). (eff' (i, G, pc, ST, LT), if EX C p D. i = Invoke_special C init p & ST ! length p = PartInit D then True else z)
xcpt_eff i G pc at et == map (%C. (the (match_exception_table G C pc et), (%s. (([Init (Class C)], snd (fst s)), snd s)) ` at)) (xcpt_names (i, G, pc, et))
lemma appLoad:
app (Load idx) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & idx < length LT & LT ! idx ~= Err & length ST < maxs))
lemma appStore:
app (Store idx) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts ST LT z. s = ((ts # ST, LT), z) & idx < length LT))
lemma appLitPush:
app (LitPush v) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & length ST < maxs & typeof (%v. None) v : {Some NT} Un (Some o PrimT) ` {Void, Boolean, Integer}))
lemma appGetField:
app (Getfield F C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt NullPointer) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX oT vT ST LT z. s = ((oT # ST, LT), z) & is_class G C & field (G, C) F = Some (C, vT) & G |- oT <=i Init (Class C) & Ball (set (match G (Xcpt NullPointer) pc et)) (is_class G)))
lemma appPutField:
app (Putfield F C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt NullPointer) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX vT vT' oT ST LT z. s = ((vT # oT # ST, LT), z) & is_class G C & field (G, C) F = Some (C, vT') & G |- oT <=i Init (Class C) & G |- vT <=i Init vT' & Ball (set (match G (Xcpt NullPointer) pc et)) (is_class G)))
lemma appNew:
app (New C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt OutOfMemory) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & is_class G C & length ST < maxs & UnInit C pc ~: set ST & Ball (set (match G (Xcpt OutOfMemory) pc et)) (is_class G)))
lemma appCheckcast:
app (Checkcast C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt ClassCast) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX rT ST LT z. s = ((Init (RefT rT) # ST, LT), z) & is_class G C & Ball (set (match G (Xcpt ClassCast) pc et)) (is_class G)))
lemma appPop:
app Pop G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts ST LT z. s = ((ts # ST, LT), z)))
lemma appDup:
app Dup G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts ST LT z. s = ((ts # ST, LT), z) & 1 + length ST < maxs))
lemma appDup_x1:
app Dup_x1 G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts1 ts2 ST LT z. s = ((ts1 # ts2 # ST, LT), z) & 2 + length ST < maxs))
lemma appDup_x2:
app Dup_x2 G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts1 ts2 ts3 ST LT z. s = ((ts1 # ts2 # ts3 # ST, LT), z) & 3 + length ST < maxs))
lemma appSwap:
app Swap G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts1 ts2 ST LT z. s = ((ts1 # ts2 # ST, LT), z)))
lemma appIAdd:
app IAdd G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ST LT z. s = ((Init (PrimT Integer) # Init (PrimT Integer) # ST, LT), z)))
lemma appIfcmpeq:
app (Ifcmpeq b) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & nat (int pc + b) < mpc & (ALL s:at. EX ts1 ts2 ST LT z. s = ((Init ts1 # Init ts2 # ST, LT), z) & 0 <= b + int pc & ((EX p. ts1 = PrimT p & ts2 = PrimT p) | (EX r r'. ts1 = RefT r & ts2 = RefT r'))))
lemma appReturn:
app Return G C' pc maxs mpc rT ini et at = (ALL s:at. EX T ST LT z. s = ((T # ST, LT), z) & G |- T <=i Init rT & (ini --> z))
lemma appGoto:
app (Goto b) G C' pc maxs mpc rT ini et at = (nat (int pc + b) < mpc & (at ~= {} --> 0 <= int pc + b))
lemma appThrow:
app Throw G C' pc maxs mpc rT ini et at = ((ALL C:set (match_any G pc et). the (match_exception_table G C pc et) < mpc) & (ALL s:at. EX ST LT z r. s = ((Init (RefT r) # ST, LT), z) & Ball (set (match_any G pc et)) (is_class G)))
lemma appJsr:
app (Jsr b) G C' pc maxs mpc rT ini et at = (nat (int pc + b) < mpc & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & 0 <= int pc + b & length ST < maxs))
lemma set_SOME_lists:
finite s ==> set (SOME l. set l = s) = s
lemma appRet:
finite at ==> app (Ret x) G C' pc maxs mpc rT ini et at = (ALL s:at. EX ST LT z. s = ((ST, LT), z) & x < length LT & (EX r. LT ! x = OK (Init (RA r)) & r < mpc))
lemma appInvoke:
app (Invoke C mn fpTs) G C' pc maxs mpc rT ini et at = ((Suc pc < mpc & (ALL C:set (match_any G pc et). the (match_exception_table G C pc et) < mpc)) & (ALL s:at. EX apTs X ST LT mD' rT' b' z. s = ((rev apTs @ X # ST, LT), z) & mn ~= init & length apTs = length fpTs & is_class G C & (ALL (aT, fT):set (zip apTs fpTs). G |- aT <=i Init fT) & method (G, C) (mn, fpTs) = Some (mD', rT', b') & G |- X <=i Init (Class C) & Ball (set (match_any G pc et)) (is_class G)))
lemma appInvoke_special:
app (Invoke_special C mn fpTs) G C' pc maxs mpc rT ini et at = ((Suc pc < mpc & (ALL C:set (match_any G pc et). the (match_exception_table G C pc et) < mpc)) & (ALL s:at. EX apTs X ST LT rT' b' z. s = ((rev apTs @ X # ST, LT), z) & mn = init & length apTs = length fpTs & is_class G C & (ALL (aT, fT):set (zip apTs fpTs). G |- aT <=i Init fT) & method (G, C) (mn, fpTs) = Some (C, rT', b') & ((EX pc. X = UnInit C pc) | X = PartInit C' & G |- C' <=C1 C & ¬ z) & Ball (set (match_any G pc et)) (is_class G)))
lemma replace_map_OK:
replace (OK x) (OK y) (map OK l) = map OK (replace x y l)
lemma effNone:
(pc', s') : set (eff i G pc et {}) ==> s' = {}
lemmas app_simps:
app i G C' pc maxs mpc rT ini et {} = (ALL (pc', s'):set (eff i G pc et {}). pc' < mpc)
app (Load idx) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & idx < length LT & LT ! idx ~= Err & length ST < maxs))
app (Store idx) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts ST LT z. s = ((ts # ST, LT), z) & idx < length LT))
app (LitPush v) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & length ST < maxs & typeof (%v. None) v : {Some NT} Un (Some o PrimT) ` {Void, Boolean, Integer}))
app (Getfield F C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt NullPointer) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX oT vT ST LT z. s = ((oT # ST, LT), z) & is_class G C & field (G, C) F = Some (C, vT) & G |- oT <=i Init (Class C) & Ball (set (match G (Xcpt NullPointer) pc et)) (is_class G)))
app (Putfield F C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt NullPointer) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX vT vT' oT ST LT z. s = ((vT # oT # ST, LT), z) & is_class G C & field (G, C) F = Some (C, vT') & G |- oT <=i Init (Class C) & G |- vT <=i Init vT' & Ball (set (match G (Xcpt NullPointer) pc et)) (is_class G)))
app (New C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt OutOfMemory) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & is_class G C & length ST < maxs & UnInit C pc ~: set ST & Ball (set (match G (Xcpt OutOfMemory) pc et)) (is_class G)))
app (Checkcast C) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL x:set (match G (Xcpt ClassCast) pc et). the (match_exception_table G x pc et) < mpc) & (ALL s:at. EX rT ST LT z. s = ((Init (RefT rT) # ST, LT), z) & is_class G C & Ball (set (match G (Xcpt ClassCast) pc et)) (is_class G)))
app Pop G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts ST LT z. s = ((ts # ST, LT), z)))
app Dup G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts ST LT z. s = ((ts # ST, LT), z) & 1 + length ST < maxs))
app Dup_x1 G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts1 ts2 ST LT z. s = ((ts1 # ts2 # ST, LT), z) & 2 + length ST < maxs))
app Dup_x2 G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts1 ts2 ts3 ST LT z. s = ((ts1 # ts2 # ts3 # ST, LT), z) & 3 + length ST < maxs))
app Swap G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ts1 ts2 ST LT z. s = ((ts1 # ts2 # ST, LT), z)))
app IAdd G C' pc maxs mpc rT ini et at = (Suc pc < mpc & (ALL s:at. EX ST LT z. s = ((Init (PrimT Integer) # Init (PrimT Integer) # ST, LT), z)))
app (Ifcmpeq b) G C' pc maxs mpc rT ini et at = (Suc pc < mpc & nat (int pc + b) < mpc & (ALL s:at. EX ts1 ts2 ST LT z. s = ((Init ts1 # Init ts2 # ST, LT), z) & 0 <= b + int pc & ((EX p. ts1 = PrimT p & ts2 = PrimT p) | (EX r r'. ts1 = RefT r & ts2 = RefT r'))))
app Return G C' pc maxs mpc rT ini et at = (ALL s:at. EX T ST LT z. s = ((T # ST, LT), z) & G |- T <=i Init rT & (ini --> z))
app (Goto b) G C' pc maxs mpc rT ini et at = (nat (int pc + b) < mpc & (at ~= {} --> 0 <= int pc + b))
app Throw G C' pc maxs mpc rT ini et at = ((ALL C:set (match_any G pc et). the (match_exception_table G C pc et) < mpc) & (ALL s:at. EX ST LT z r. s = ((Init (RefT r) # ST, LT), z) & Ball (set (match_any G pc et)) (is_class G)))
app (Jsr b) G C' pc maxs mpc rT ini et at = (nat (int pc + b) < mpc & (ALL s:at. EX ST LT z. s = ((ST, LT), z) & 0 <= int pc + b & length ST < maxs))
finite at ==> app (Ret x) G C' pc maxs mpc rT ini et at = (ALL s:at. EX ST LT z. s = ((ST, LT), z) & x < length LT & (EX r. LT ! x = OK (Init (RA r)) & r < mpc))
app (Invoke C mn fpTs) G C' pc maxs mpc rT ini et at = ((Suc pc < mpc & (ALL C:set (match_any G pc et). the (match_exception_table G C pc et) < mpc)) & (ALL s:at. EX apTs X ST LT mD' rT' b' z. s = ((rev apTs @ X # ST, LT), z) & mn ~= init & length apTs = length fpTs & is_class G C & (ALL (aT, fT):set (zip apTs fpTs). G |- aT <=i Init fT) & method (G, C) (mn, fpTs) = Some (mD', rT', b') & G |- X <=i Init (Class C) & Ball (set (match_any G pc et)) (is_class G)))
app (Invoke_special C mn fpTs) G C' pc maxs mpc rT ini et at = ((Suc pc < mpc & (ALL C:set (match_any G pc et). the (match_exception_table G C pc et) < mpc)) & (ALL s:at. EX apTs X ST LT rT' b' z. s = ((rev apTs @ X # ST, LT), z) & mn = init & length apTs = length fpTs & is_class G C & (ALL (aT, fT):set (zip apTs fpTs). G |- aT <=i Init fT) & method (G, C) (mn, fpTs) = Some (C, rT', b') & ((EX pc. X = UnInit C pc) | X = PartInit C' & G |- C' <=C1 C & ¬ z) & Ball (set (match_any G pc et)) (is_class G)))
lemma xcpt_app_lemma:
xcpt_app i G pc et = list_all (is_class G) (xcpt_names (i, G, pc, et))
lemma
succs (Ret x) pc s = tolist (theRA x ` s)
lemma
norm_eff i G pc pc' at = eff_bool i G pc ` (if isRet i then set_filter (%s. pc' = theRA (theIdx i) s) at else at)
lemma
app' (Ifcmpeq b, G, C', pc, maxs, rT, Init ts # Init ts' # ST, LT) = (0 <= int pc + b & (if isPrimT ts then ts' = ts else True) & (if isRefT ts then isRefT ts' else True))
lemma
app' (Invoke_special C mn fpTs, G, C', pc, maxs, rT, s) = (length fpTs < length (fst s) & mn = init & (let apTs = rev (take (length fpTs) (fst s)); X = fst s ! length fpTs in is_class G C & list_all2 (%aT fT. G |- aT <=i Init fT) apTs fpTs & method (G, C) (mn, fpTs) ~= None & (let (C'', rT', b) = the (method (G, C) (mn, fpTs)) in C = C'' & (isUninitC X C | X = PartInit C' & G |- C' <=C1 C))))
lemma
app' (Ret x, G, C', pc, maxs, rT, ST, LT) = (x < length LT & isOKInitRA (LT ! x))
lemma
app i G C' pc mxs mpc rT ini et at = ((ALL (s, z):at. xcpt_app i G pc et & app' (i, G, C', pc, mxs, rT, s) & (if ini & i = Return then z else True) & (if isInv_spcl i & fst s ! pLen i = PartInit C' then ¬ z else True)) & (ALL (pc', s'):set (eff i G pc et at). pc' < mpc))
lemma
eff_bool i G pc = (%((ST, LT), z). (eff' (i, G, pc, ST, LT), if isInv_spcl i & mNam i = init & isPartInit (ST ! pLen i) then True else z))
lemmas
app i G C' pc mxs mpc rT ini et at == (ALL (s, z):at. xcpt_app i G pc et & app' (i, G, C', pc, mxs, rT, s) & (ini & i = Return --> z) & (ALL C m p. i = Invoke_special C m p & fst s ! length p = PartInit C' --> ¬ z)) & (ALL (pc', s'):set (eff i G pc et at). pc' < mpc)
xcpt_app i G pc et == Ball (set (xcpt_names (i, G, pc, et))) (is_class G)