Up to index of Isabelle/HOL/objinit
theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM:(* Title: HOL/MicroJava/BV/JVM.thy ID: $Id: LBVJVM.html,v 1.1 2002/11/28 14:12:09 kleing Exp $ Author: Tobias Nipkow, Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{LBV for the JVM}\label{sec:JVM} *} theory LBVJVM = LBVCorrect + LBVComplete + Typing_Framework_JVM: types prog_cert = "cname \<Rightarrow> sig \<Rightarrow> state list" constdefs check_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state list \<Rightarrow> bool" "check_cert G mxs mxr n cert \<equiv> check_types G mxs mxr cert \<and> length cert = n+1 \<and> (\<forall>i<n. cert!i \<noteq> Err) \<and> cert!n = OK None" lbvjvm :: "jvm_prog \<Rightarrow> cname \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> state \<Rightarrow> state" "lbvjvm G C maxs maxr rT ini et cert bs \<equiv> wtl_inst_list bs cert (JVMType.sup G maxs maxr) (JVMType.le G maxs maxr) Err (OK None) (exec G C maxs rT ini et bs) 0" wt_lbv :: "jvm_prog \<Rightarrow> cname \<Rightarrow> mname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> state list \<Rightarrow> instr list \<Rightarrow> bool" "wt_lbv G C mn pTs rT mxs mxl et cert ins \<equiv> check_bounded ins et \<and> check_cert G mxs (1+size pTs+mxl) (length ins) cert \<and> 0 < size ins \<and> (let this = OK (if mn=init \<and> C \<noteq> Object then PartInit C else Init (Class C)); start = Some (([],this#(map (OK\<circ>Init) pTs)@(replicate mxl Err)),C=Object); result = lbvjvm G C mxs (1+size pTs+mxl) rT (mn=init) et cert ins (OK start) in result \<noteq> Err)" wt_jvm_prog_lbv :: "jvm_prog \<Rightarrow> prog_cert \<Rightarrow> bool" "wt_jvm_prog_lbv G cert \<equiv> wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_lbv G C (fst sig) (snd sig) rT maxs maxl et (cert C sig) b) G" mk_cert :: "jvm_prog \<Rightarrow> cname \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> bool \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> method_type \<Rightarrow> state list" "mk_cert G C maxs rT ini et bs phi \<equiv> make_cert (exec G C maxs rT ini et bs) (map OK phi) (OK None)" prg_cert :: "jvm_prog \<Rightarrow> prog_type \<Rightarrow> prog_cert" "prg_cert G phi C sig \<equiv> let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in mk_cert G C maxs rT (fst sig=init) et ins (phi C sig)" lemma check_certD: "check_cert G mxs mxr n cert \<Longrightarrow> cert_ok cert n Err (OK None) (states G mxs mxr)" apply (unfold cert_ok_def check_cert_def check_types_def) apply (auto simp add: list_all_ball) done lemma list_appendI: "\<lbrakk>a \<in> list x A; b \<in> list y A\<rbrakk> \<Longrightarrow> a @ b \<in> list (x+y) A" apply (unfold list_def) apply (simp (no_asm)) apply blast done lemma list_map [simp]: "(map f xs \<in> list (length xs) A) = (f ` set xs \<subseteq> A)" apply (unfold list_def) apply simp done lemma [intro]: "x \<in> A \<Longrightarrow> replicate n x \<in> list n A" by (induct n, auto) lemma (in start_context) first_in_A: "OK first \<in> A" apply (insert pTs C) apply (simp add: JVM_states_unfold) apply (auto intro!: list_appendI) apply force+ done lemma (in start_context) wt_lbv_wt_step: assumes lbv: "wt_lbv G C mn pTs rT mxs mxl et cert bs" defines [simp]: "f \<equiv> JVMType.sup G mxs mxr" shows "\<exists>ts \<in> list (size bs) A. wt_step r Err step ts \<and> OK first <=_r ts!0" proof - have "semilat (JVMType.sl G mxs mxr)" by (rule semilat_JVM_slI) hence "semilat (A, r, f)" by (simp add: sl_triple_conv) moreover have "top r Err" by (simp add: JVM_le_unfold) moreover have "Err \<in> A" by (simp add: JVM_states_unfold) moreover have "bottom r (OK None)" by (simp add: JVM_le_unfold bottom_def) moreover have "OK None \<in> A" by (simp add: JVM_states_unfold) moreover from lbv have "bounded step (length bs)" by (clarsimp simp add: wt_lbv_def exec_def) (intro bounded_lift check_bounded_is_bounded) moreover from lbv have "cert_ok cert (length bs) Err (OK None) A" by (unfold wt_lbv_def) (auto dest: check_certD) moreover have "pres_type step (length bs) A" by simp (rule exec_pres_type) moreover from lbv have "wtl_inst_list bs cert f r Err (OK None) step 0 (OK first) \<noteq> Err" by (simp add: wt_lbv_def lbvjvm_def) moreover note first_in_A moreover from lbv have "0 < length bs" by (simp add: wt_lbv_def) ultimately show ?thesis by (rule lbvs.wtl_sound_strong) qed lemma (in start_context) wt_lbv_wt_method: assumes lbv: "wt_lbv G C mn pTs rT mxs mxl et cert bs" shows "\<exists>phi. wt_method G C mn pTs rT mxs mxl bs et phi" proof - from lbv have l: "bs \<noteq> []" by (simp add: wt_lbv_def) moreover from wf lbv C pTs obtain phi where list: "phi \<in> list (length bs) A" and step: "wt_step r Err step phi" and start: "OK first <=_r phi!0" by (blast dest: wt_lbv_wt_step) from list have [simp]: "length phi = length bs" by simp have "length (map ok_val phi) = length bs" by simp moreover from l have 0: "0 < length phi" by simp with step obtain phi0 where "phi!0 = OK phi0" by (unfold wt_step_def) blast with start 0 have "wt_start G C mn pTs mxl (map ok_val phi)" by (simp add: wt_start_def JVM_le_Err_conv lesub_def map_compose) moreover from lbv have chk_bounded: "check_bounded bs et" by (simp add: wt_lbv_def) moreover { from list have "check_types G mxs mxr phi" by (simp add: check_types_def) also from step have [symmetric]: "map OK (map ok_val phi) = phi" by (auto intro!: map_id simp add: wt_step_def) finally have "check_types G mxs mxr (map OK (map ok_val phi))" . } moreover { from chk_bounded have "bounded (err_step (length bs) app eff) (length bs)" by simp (blast intro: bounded_lift check_bounded_is_bounded) moreover from step have "wt_err_step (sup_state_opt G) step phi" by (simp add: wt_err_step_def JVM_le_Err_conv) ultimately have "wt_app_eff (sup_state_opt G) app eff (map ok_val phi)" by (auto intro: wt_err_imp_wt_app_eff simp add: exec_def) } ultimately have "wt_method G C mn pTs rT mxs mxl bs et (map ok_val phi)" by (simp add: wt_method_def2) thus ?thesis .. qed lemma (in start_context) wt_method_wt_lbv: assumes wt: "wt_method G C mn pTs rT mxs mxl bs et phi" defines [simp]: "cert \<equiv> mk_cert G C mxs rT (mn=init) et bs phi" defines [simp]: "f \<equiv> JVMType.sup G mxs mxr" shows "wt_lbv G C mn pTs rT mxs mxl et cert bs" proof - let ?phi = "map OK phi" let ?cert = "make_cert step ?phi (OK None)" from wt obtain 0: "0 < length bs" and length: "length bs = length ?phi" and ck_bounded: "check_bounded bs et" and ck_types: "check_types G mxs mxr ?phi" and wt_start: "wt_start G C mn pTs mxl phi" and app_eff: "wt_app_eff (sup_state_opt G) app eff phi" by (force simp add: wt_method_def2) have "semilat (JVMType.sl G mxs mxr)" by (rule semilat_JVM_slI) hence "semilat (A, r, f)" by (simp add: sl_triple_conv) moreover have "top r Err" by (simp add: JVM_le_unfold) moreover have "Err \<in> A" by (simp add: JVM_states_unfold) moreover have "bottom r (OK None)" by (simp add: JVM_le_unfold bottom_def) moreover have "OK None \<in> A" by (simp add: JVM_states_unfold) moreover from ck_bounded have bounded: "bounded step (length bs)" by (clarsimp simp add: exec_def) (intro bounded_lift check_bounded_is_bounded) with wf have "mono r step (length bs) A" by simp (rule exec_mono) hence "mono r step (length ?phi) A" by (simp add: length) moreover have "pres_type step (length bs) A" by simp (rule exec_pres_type) hence "pres_type step (length ?phi) A" by (simp add: length) moreover from ck_types have "set ?phi \<subseteq> A" by (simp add: check_types_def) hence "\<forall>pc. pc < length ?phi \<longrightarrow> ?phi!pc \<in> A \<and> ?phi!pc \<noteq> Err" by auto moreover from bounded have "bounded step (length ?phi)" by (simp add: length) moreover have "OK None \<noteq> Err" by simp moreover from bounded length app_eff have "wt_err_step (sup_state_opt G) step ?phi" by (auto intro: wt_app_eff_imp_wt_err simp add: exec_def) hence "wt_step r Err step ?phi" by (simp add: wt_err_step_def JVM_le_Err_conv) moreover from 0 length have "0 < length phi" by auto hence "?phi!0 = OK (phi!0)" by simp with wt_start have "OK first <=_r ?phi!0" by (clarsimp simp add: wt_start_def lesub_def JVM_le_Err_conv map_compose) moreover note first_in_A moreover have "OK first \<noteq> Err" by simp moreover note length ultimately have "wtl_inst_list bs ?cert f r Err (OK None) step 0 (OK first) \<noteq> Err" by (rule lbvc.wtl_complete) moreover from 0 length have "phi \<noteq> []" by auto moreover from ck_types have "check_types G mxs mxr ?cert" by (auto simp add: make_cert_def check_types_def JVM_states_unfold) moreover note ck_bounded 0 length ultimately show ?thesis by (simp add: wt_lbv_def lbvjvm_def mk_cert_def check_cert_def make_cert_def nth_append) qed theorem jvm_lbv_correct: "wt_jvm_prog_lbv G Cert \<Longrightarrow> \<exists>Phi. wt_jvm_prog G Phi" proof - let ?Phi = "\<lambda>C sig. let (C,rT,(maxs,maxl,bs,et)) = the (method (G,C) sig) in SOME phi. wt_method G C (fst sig) (snd sig) rT maxs maxl bs et phi" assume "wt_jvm_prog_lbv G Cert" hence "wt_jvm_prog G ?Phi" apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def) apply (erule jvm_prog_lift) apply (auto dest: start_context.wt_lbv_wt_method intro: someI) done thus ?thesis by blast qed theorem jvm_lbv_complete: "wt_jvm_prog G Phi \<Longrightarrow> wt_jvm_prog_lbv G (prg_cert G Phi)" apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def) apply (erule jvm_prog_lift) apply (auto simp add: prg_cert_def intro start_context.wt_method_wt_lbv) done end
lemma check_certD:
check_cert G mxs mxr n cert ==> cert_ok cert n Err (OK None) (states G mxs mxr)
lemma list_appendI:
[| a : list x A; b : list y A |] ==> a @ b : list (x + y) A
lemma list_map:
(map f xs : list (length xs) A) = (f ` set xs <= A)
lemma
x : A ==> replicate n x : list n A
lemma first_in_A:
[| wf_prog wf_mb G; is_class G C; set pTs <= types G |] ==> OK (Some (([], OK (if mn = init & C ~= Object then PartInit C else Init (Class C)) # map (OK o Init) pTs @ replicate mxl Err), C = Object)) : states G mxs (1 + length pTs + mxl)
lemma
[| wf_prog wf_mb G; is_class G C; set pTs <= types G; wt_lbv G C mn pTs rT mxs mxl et cert bs |] ==> EX ts:list (length bs) (states G mxs (1 + length pTs + mxl)). wt_step (JVMType.le G mxs (1 + length pTs + mxl)) Err (Typing_Framework_JVM.exec G C mxs rT (mn = init) et bs) ts & OK (Some (([], OK (if mn = init & C ~= Object then PartInit C else Init (Class C)) # map (OK o Init) pTs @ replicate mxl Err), C = Object)) <=_(JVMType.le G mxs (1 + length pTs + mxl)) ts ! 0
lemma
[| wf_prog wf_mb G; is_class G C; set pTs <= types G; wt_lbv G C mn pTs rT mxs mxl et cert bs |] ==> EX phi. wt_method G C mn pTs rT mxs mxl bs et phi
lemma
[| wf_prog wf_mb G; is_class G C; set pTs <= types G; wt_method G C mn pTs rT mxs mxl bs et phi |] ==> wt_lbv G C mn pTs rT mxs mxl et (mk_cert G C mxs rT (mn = init) et bs phi) bs
theorem jvm_lbv_correct:
wt_jvm_prog_lbv G Cert ==> EX Phi. wt_jvm_prog G Phi
theorem jvm_lbv_complete:
wt_jvm_prog G Phi ==> wt_jvm_prog_lbv G (prg_cert G Phi)